A Computational Sketch-Based Approach Towards Optimal Product Design Solutions

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 5 (2025), p. 2413
Autor principal: Charalampous, Paschalis
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176306262
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15052413  |2 doi 
035 |a 3176306262 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Charalampous, Paschalis 
245 1 |a A Computational Sketch-Based Approach Towards Optimal Product Design Solutions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a numerical sketch-based methodology to achieve optimal product design solutions, bridging the gap between initial conceptual sketches and advanced engineering analyses. The proposed approach enables the transformation of simple hand-drawn sketches into digital models suitable for complex computational simulations and design optimization. Using computer vision algorithms, sketches are processed to generate digital design components that serve as inputs for Finite Element Analysis (FEA). In order to further enhance the overall design process, topology optimization (TO) is also performed, iteratively refining the geometry to achieve optimal material distribution for improved structural performance. Additionally, Adaptive Mesh Refinement (AMR) techniques are applied to ensure computational efficiency and accuracy by dynamically refining the mesh in regions of high complexity or stress concentration. The synergy of sketch-based modeling, FEA, TO, and AMR demonstrates significant potential in reducing design cycles while maintaining high-performance standards. Finally, it should be noted that the proposed pipeline consists of a fully automated procedure, hence it could reduce the learning curve for the designers, enabling companies to onboard employees faster and integrate advanced design techniques into their workflows without extensive training. The above-mentioned modules render the introduced approach particularly suitable for applications in product design development that can be utilized in several industries like mechanical, manufacturing, and furniture. 
653 |a Load 
653 |a Simulation 
653 |a Design optimization 
653 |a Physics 
653 |a Fluid dynamics 
653 |a Open source software 
653 |a Computer aided design--CAD 
653 |a Neural networks 
653 |a Methods 
653 |a Automation 
653 |a Designers 
653 |a Performance evaluation 
653 |a Boundary conditions 
653 |a Generative artificial intelligence 
653 |a Product design 
653 |a Computer aided engineering--CAE 
653 |a Efficiency 
653 |a Algorithms 
773 0 |t Applied Sciences  |g vol. 15, no. 5 (2025), p. 2413 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176306262/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176306262/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176306262/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch