The Establishment and Evaluation Model of the Thematic Deep-Learning Teaching Module

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Applied Sciences vol. 15, no. 5 (2025), p. 2335
Päätekijä: Kai-Chao, Yao
Muut tekijät: Li-Chiou, Hsu, Fang, Jiunn-Shiou, Yi-Jung, Chen, Zhou-Kai, Guo
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3176312871
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15052335  |2 doi 
035 |a 3176312871 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Kai-Chao, Yao 
245 1 |a The Establishment and Evaluation Model of the Thematic Deep-Learning Teaching Module 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, the application of artificial intelligence (AI) in industry has matured, requiring deeper learning and integration of existing technologies. This study started with technical education to improve the professional quality of human resources. The double-triangular fuzzy number and gray area testing methods in the fuzzy Delphi method (FDM) were used to evaluate expert consensus, plan technical capability indicators, and ensure the integrity and appropriateness of teaching materials. Based on these indicators, special subject teaching course units were designed and integrated into existing courses for experimental teaching and evaluation. The teaching module arrangement in this research used a virtual instrument control system with LabVIEW v2021 as the GUI and the myRIO controller. The proposed system integrates an artificial neural network (ANN) AI model built with Python v3.7 for data analysis and prediction, forming an embedded teaching module for a deep learning-oriented intelligent robotic environmental monitoring system. This study evaluated students’ acceptance of deep learning robotics teaching modules and their impact on improving their technical skills. The psychomotor scale established by the scholars was adopted and revised, including this study’s technical ability indicators. The test-retest reliability of the psychomotor scale was high. The results revealed that the post-test scores of the psychomotor scale were significantly better than those of the pre-test, indicating that students’ overall technical abilities improved. Students’ affective attitudes toward the four dimensions of teaching material and equipment, cognitive development, skills performance, and self-exploration were positive. Feedback revealed that students who participated in the teaching experiment responded positively on all levels of the affective scale, indicating increased motivation and willingness to continue learning. This study successfully constructed a teaching module and evaluation model for deep learning robotic environmental sensing and control. The teaching module and evaluation model established through this research contribute to the cultivation and effectiveness evaluation of relevant technical talents. 
651 4 |a Taiwan 
653 |a Innovations 
653 |a Musical instruments 
653 |a Machine learning 
653 |a Big Data 
653 |a Software 
653 |a Teaching aids & devices 
653 |a Students 
653 |a Embedded systems 
653 |a Deep learning 
653 |a Artificial intelligence 
653 |a Neural networks 
653 |a Educational materials 
653 |a Questionnaires 
653 |a Robots 
653 |a Brain 
653 |a Computer simulation 
653 |a Vocational education 
653 |a Algorithms 
653 |a Environmental monitoring 
653 |a Monitoring systems 
653 |a Technology 
653 |a Internet of Things 
653 |a Robotics 
653 |a Data analysis 
700 1 |a Li-Chiou, Hsu 
700 1 |a Fang, Jiunn-Shiou 
700 1 |a Yi-Jung, Chen 
700 1 |a Zhou-Kai, Guo 
773 0 |t Applied Sciences  |g vol. 15, no. 5 (2025), p. 2335 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176312871/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176312871/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176312871/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch