FFMT: Unsupervised RGB-D Point Cloud Registration via Fusion Feature Matching with Transformer

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 5 (2025), p. 2472
Autor principal: Qiu, Jiacun
Otros Autores: Han, Zhenqi, Liu, Lizhaung, Zhang, Jialu
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176313458
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15052472  |2 doi 
035 |a 3176313458 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Qiu, Jiacun  |u Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; <email>qiujc@sari.ac.cn</email> (J.Q.); <email>hanzq@sari.ac.cn</email> (Z.H.); <email>zhangjl@sari.ac.cn</email> (J.Z.); University of Chinese Academy of Sciences, Beijing 100049, China 
245 1 |a FFMT: Unsupervised RGB-D Point Cloud Registration via Fusion Feature Matching with Transformer 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Point cloud registration is a fundamental problem in computer vision and 3D computing, aiming to align point cloud data from different sensors or viewpoints into a unified coordinate system. In recent years, the rapid development of RGB-D sensor technology has greatly facilitated the acquisition of RGB-D data. In previous unsupervised point cloud registration methods based on RGB-D data, there has often been an overemphasis on matching local features, while the potential value of global information has been overlooked, thus limiting the improvement in registration performance. To address this issue, this paper proposes a self-attention-based global information attention module, which learns the global context of fused RGB-D features and effectively integrates global information into each individual feature. Furthermore, this paper introduces alternating self-attention and cross-attention layers, enabling the final feature fusion to achieve a broader global receptive field, thereby facilitating more precise matching relationships. We conduct extensive experiments on the ScanNet and 3DMatch datasets, and the results show that, compared to the previous state-of-the-art methods, our approach reduces the average rotation error by 26.9% and 32% on the ScanNet and 3DMatch datasets, respectively. Our method also achieves state-of-the-art performance on other key metrics. 
653 |a Accuracy 
653 |a 3-D graphics 
653 |a Deep learning 
653 |a Datasets 
653 |a Computer graphics 
653 |a Algorithms 
653 |a Registration 
653 |a Computer vision 
653 |a Neural networks 
653 |a Sensors 
653 |a Optimization 
653 |a Semantics 
653 |a Efficiency 
700 1 |a Han, Zhenqi  |u Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; <email>qiujc@sari.ac.cn</email> (J.Q.); <email>hanzq@sari.ac.cn</email> (Z.H.); <email>zhangjl@sari.ac.cn</email> (J.Z.) 
700 1 |a Liu, Lizhaung  |u Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; <email>qiujc@sari.ac.cn</email> (J.Q.); <email>hanzq@sari.ac.cn</email> (Z.H.); <email>zhangjl@sari.ac.cn</email> (J.Z.) 
700 1 |a Zhang, Jialu  |u Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; <email>qiujc@sari.ac.cn</email> (J.Q.); <email>hanzq@sari.ac.cn</email> (Z.H.); <email>zhangjl@sari.ac.cn</email> (J.Z.) 
773 0 |t Applied Sciences  |g vol. 15, no. 5 (2025), p. 2472 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176313458/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176313458/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176313458/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch