A Deep Learning Method of Credit Card Fraud Detection Based on Continuous-Coupled Neural Networks

Guardado en:
Bibliografiske detaljer
Udgivet i:Mathematics vol. 13, no. 5 (2025), p. 819
Hovedforfatter: Wu, Yanxi
Andre forfattere: Wang, Liping, Li, Hongyu, Liu, Jizhao
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3176335893
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13050819  |2 doi 
035 |a 3176335893 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Wu, Yanxi  |u School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China; <email>wuyx22@lzu.edu.cn</email> 
245 1 |a A Deep Learning Method of Credit Card Fraud Detection Based on Continuous-Coupled Neural Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the widespread use of credit cards in online and offline transactions, credit card fraud has become a significant challenge in the financial sector. The rapid advancement of payment technologies has led to increasingly sophisticated fraud techniques, necessitating more effective detection methods. While machine learning has been extensively applied in fraud detection, the application of deep learning methods remains relatively limited. Inspired by brain-like computing, this work employs the Continuous-Coupled Neural Network (CCNN) for credit card fraud detection. Unlike traditional neural networks, the CCNN enhances the representation of complex temporal and spatial patterns through continuous neuron activation and dynamic coupling mechanisms. Using the Kaggle Credit Card Fraud Detection (CCFD) dataset, we mitigate data imbalance via the Synthetic Minority Oversampling Technique (SMOTE) and transform sample feature vectors into matrices for training. Experimental results show that our method achieves an accuracy of 0.9998, precision of 0.9996, recall of 1.0000, and an F1-score of 0.9998, surpassing traditional machine learning models, which highlight CCNN’s potential to enhance the security and efficiency of fraud detection in the financial industry. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Regression analysis 
653 |a Neural networks 
653 |a Brain research 
653 |a Credit card fraud 
653 |a Fraud prevention 
653 |a Support vector machines 
653 |a International finance 
653 |a Time series 
653 |a Credit card processing 
653 |a Efficiency 
700 1 |a Wang, Liping  |u Wuhan Maritime Communication Research Institute, Wuhan 430079, China; <email>wlp722@126.com</email> 
700 1 |a Li, Hongyu  |u Henan Costar Group Co., Ltd., Nanyang 473000, China; <email>lihongyu202801@126.com</email> 
700 1 |a Liu, Jizhao  |u School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China; <email>wuyx22@lzu.edu.cn</email>; National-Local Joint Engineering Laboratory of Building Health Monitoring and Disaster Prevention Technology, Hefei 230601, China 
773 0 |t Mathematics  |g vol. 13, no. 5 (2025), p. 819 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176335893/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176335893/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176335893/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch