An Adaptive GPR-Based Multidisciplinary Design Optimization of Structural and Control Parameters of Intelligent Bus for Rollover Stability

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 5 (2025), p. 782
Autor principal: Wang, Tingting
Otros Autores: Xu, Shao, Qin, Dongchen, Huang, Kun, Yao, Mingkuan, Duan, Yuechen
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176336242
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13050782  |2 doi 
035 |a 3176336242 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Wang, Tingting  |u School of Mechanical and Power Engineering, Zhegzhou University, Zhengzhou 450001, China; <email>wangtingting@zzu.edu.cn</email> (T.W.); <email>shaoxu4869@gs.zzu.edu.cn</email> (X.S.); <email>dcqin@zzu.edu.cn</email> (D.Q.); <email>yaomingkuan@zzu.edu.cn</email> (M.Y.) 
245 1 |a An Adaptive GPR-Based Multidisciplinary Design Optimization of Structural and Control Parameters of Intelligent Bus for Rollover Stability 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Considering the influence of high-speed obstacle avoidance trajectory in the optimization design stage of intelligent bus aerodynamic shape. A collaborative optimization method aiming at aerodynamic structure and trajectory control system for intelligent bus rollover stability is proposed to reduce the interference of lateral aerodynamic load caused by large bus side area on driving stability and improve the rollover safety of intelligent bus in high-speed obstacle avoidance process. At the conceptual design stage, a multidisciplinary co-design optimization frame of aerodynamics/dynamics/control is built, and an adaptive Gaussian Process Regression approximate modeling method is proposed to establish an approximate model of high-precision and high-efficiency rollover evaluation index with rollover stability as the optimization objective and obstacle avoidance safety and resistance to crosswind interference as constraints. Taking rollover stability and obstacle avoidance safety as the optimization objectives, the integrated design of static structural parameters and dynamic control parameters of intelligent buses is carried out. The results show that the proposed MDO method can obtain the aerodynamic shape of the vehicle body with low crosswind sensitivity and a safe and stable obstacle avoidance trajectory. Compared with the initial trajectory, the peak lateral load transfer rate during the obstacle avoidance process decreases by 33.91%, which significantly reduces the risk of rollover. Compared with the traditional serial optimization method, the proposed co-design optimization method has obvious advantages and can further improve the driving safety performance of intelligent buses. 
653 |a Load 
653 |a Design optimization 
653 |a Rollover 
653 |a Co-design 
653 |a Public transportation 
653 |a Multidisciplinary design optimization 
653 |a Dynamic control 
653 |a Collaboration 
653 |a Lateral loads 
653 |a Aerodynamic loads 
653 |a Vehicle safety 
653 |a Buses 
653 |a Systems design 
653 |a Aerodynamics 
653 |a Crosswinds 
653 |a High speed 
653 |a Gaussian process 
653 |a Wind effects 
653 |a Stability 
653 |a Attitudes 
653 |a Optimization algorithms 
653 |a Parameters 
653 |a Load transfer 
653 |a Trajectory control 
653 |a Obstacle avoidance 
700 1 |a Xu, Shao  |u School of Mechanical and Power Engineering, Zhegzhou University, Zhengzhou 450001, China; <email>wangtingting@zzu.edu.cn</email> (T.W.); <email>shaoxu4869@gs.zzu.edu.cn</email> (X.S.); <email>dcqin@zzu.edu.cn</email> (D.Q.); <email>yaomingkuan@zzu.edu.cn</email> (M.Y.) 
700 1 |a Qin, Dongchen  |u School of Mechanical and Power Engineering, Zhegzhou University, Zhengzhou 450001, China; <email>wangtingting@zzu.edu.cn</email> (T.W.); <email>shaoxu4869@gs.zzu.edu.cn</email> (X.S.); <email>dcqin@zzu.edu.cn</email> (D.Q.); <email>yaomingkuan@zzu.edu.cn</email> (M.Y.) 
700 1 |a Huang, Kun  |u Zhengzhou Yutong Group Co., Ltd., Zhengzhou 450000, China; <email>huangkunb@yutong.com</email> 
700 1 |a Yao, Mingkuan  |u School of Mechanical and Power Engineering, Zhegzhou University, Zhengzhou 450001, China; <email>wangtingting@zzu.edu.cn</email> (T.W.); <email>shaoxu4869@gs.zzu.edu.cn</email> (X.S.); <email>dcqin@zzu.edu.cn</email> (D.Q.); <email>yaomingkuan@zzu.edu.cn</email> (M.Y.) 
700 1 |a Duan, Yuechen  |u School of Mechanical and Power Engineering, Zhegzhou University, Zhengzhou 450001, China; <email>wangtingting@zzu.edu.cn</email> (T.W.); <email>shaoxu4869@gs.zzu.edu.cn</email> (X.S.); <email>dcqin@zzu.edu.cn</email> (D.Q.); <email>yaomingkuan@zzu.edu.cn</email> (M.Y.) 
773 0 |t Mathematics  |g vol. 13, no. 5 (2025), p. 782 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176336242/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176336242/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176336242/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch