Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration

Na minha lista:
Detalhes bibliográficos
Publicado no:Mathematics vol. 13, no. 5 (2025), p. 871
Autor principal: Alshahrani, Abdullah
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3176344728
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13050871  |2 doi 
035 |a 3176344728 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Alshahrani, Abdullah 
245 1 |a Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Multi-access edge computing (MEC) has emerged as a cornerstone technology for deploying 6G network services, offering efficient computation and ultra-low-latency communication. The integration of unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) further enhances wireless propagation, capacity, and coverage, presenting a transformative paradigm for next-generation networks. This paper addresses the critical challenge of task offloading and resource allocation in an MEC-based system, where a massive MIMO base station, serving multiple macro-cells, hosts the MEC server with support from a UAV-equipped RIS. We propose an optimization framework to minimize task execution latency for user equipment (UE) by jointly optimizing task offloading and communication resource allocation within this UAV-assisted, RIS-aided network. By modeling this problem as a Markov decision process (MDP) with a discrete-continuous hybrid action space, we develop a deep reinforcement learning (DRL) algorithm leveraging a hybrid space representation to solve it effectively. Extensive simulations validate the superiority of the proposed method, demonstrating significant latency reductions compared to state-of-the-art approaches, thereby advancing the feasibility of MEC in 6G networks. 
653 |a Innovations 
653 |a Propagation 
653 |a Wireless networks 
653 |a Technological change 
653 |a Control algorithms 
653 |a 6G mobile communication 
653 |a Communication 
653 |a Unmanned aerial vehicles 
653 |a Markov processes 
653 |a Optimization 
653 |a Edge computing 
653 |a Resource allocation 
653 |a Network latency 
653 |a Mobile computing 
653 |a Computation offloading 
653 |a Algorithms 
653 |a Linear programming 
653 |a Machine learning 
653 |a Energy consumption 
653 |a Internet of Things 
653 |a Efficiency 
653 |a Reconfigurable intelligent surfaces 
773 0 |t Mathematics  |g vol. 13, no. 5 (2025), p. 871 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176344728/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176344728/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176344728/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch