On Concatenations of Regular Circular Word Languages

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 5 (2025), p. 763
Autor principal: Abdallah, Bilal
Otros Autores: Nagy, Benedek
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176344732
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13050763  |2 doi 
035 |a 3176344732 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Abdallah, Bilal  |u Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, 99450 Famagusta, North Cyprus, Mersin-10, Turkey; Department of Mathematics and Statistics, American University of the Middle East, Egaila 54200, Kuwait 
245 1 |a On Concatenations of Regular Circular Word Languages 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, one-wheel and two-wheel concatenations of circular words and their languages are investigated. One-wheel concatenation is an operation that is commutative but not associative, while two-wheel concatenation is associative but not commutative. Moreover, two-wheel concatenation may produce languages that are not languages of circular words. We define two classes of regular languages of circular words based on finite automata: in a weakly accepted circular word language, at least one conjugate of each word is accepted by the automaton; in contrast, a strongly accepted language consists of words for which all conjugates are accepted. Weakly accepted circular word languages <inline-formula>REGw</inline-formula>, in fact, are regular languages that are the same as their cyclic permutations. Strongly accepted circular word languages, <inline-formula>REGs</inline-formula>, having words with the property that all their conjugates are also in the language, are also regular. We prove that <inline-formula>REGw</inline-formula> and <inline-formula>REGs</inline-formula> coincide. We also provide regular-like expressions for these languages. Closure properties of this class are also investigated. 
653 |a Language 
653 |a Computer science 
653 |a Permutations 
653 |a Words (language) 
653 |a Languages 
653 |a Data compression 
653 |a Combinatorics 
653 |a Conjugates 
700 1 |a Nagy, Benedek  |u Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, 99450 Famagusta, North Cyprus, Mersin-10, Turkey; Department of Computer Science, Institute of Mathematics and Informatics, Eszterházy Károly Catholic University, 3300 Eger, Hungary 
773 0 |t Mathematics  |g vol. 13, no. 5 (2025), p. 763 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176344732/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176344732/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176344732/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch