Hybrid Long-Range–5G Multi-Sensor Platform for Predictive Maintenance for Ventilation Systems

Saved in:
Bibliographic Details
Published in:Electronics vol. 14, no. 5 (2025), p. 1055
Main Author: Mohanram, Praveen
Other Authors: Schmitt, Robert H
Published:
MDPI AG
Subjects:
Online Access:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3176377490
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14051055  |2 doi 
035 |a 3176377490 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Mohanram, Praveen  |u Production Metrology, Fraunhofer Institute for Production Technology IPT, 52074 Aachen, Germany 
245 1 |a Hybrid Long-Range–5G Multi-Sensor Platform for Predictive Maintenance for Ventilation Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, we present a multi-sensor platform for predictive maintenance featuring hybrid long-range (LoRa) and 5G connectivity. This hybrid approach combines LoRa’s low-power transmission for energy efficiency with 5G’s real-time data capabilities. The hardware platform integrates multiple sensors to monitor machine health parameters, with data analyzed on the device using pre-trained AI models to assess the machine’s condition. Inferences are transmitted via LoRa to the operator for maintenance scheduling, while a cloud application tracks and stores sensor data. Periodic sensor data bursts are sent via 5G to update the AI model, which is then delivered back to the platform through over-the-air (OTA) updates. We provide a comprehensive overview of the hardware architecture, along with an in-depth analysis of the data generated by the sensors, and its processing methodology. However, the data analysis and the software for ventilation control and its predictive capabilities are not the focus of this paper and are not presented. 
653 |a Data analysis 
653 |a Ventilation 
653 |a Artificial intelligence 
653 |a Sensors 
653 |a Hardware 
653 |a 5G mobile communication 
653 |a Cloud computing 
653 |a Maintenance management 
653 |a Predictive control 
653 |a Industrial Internet of Things 
653 |a Energy efficiency 
653 |a Multisensor applications 
653 |a Real time 
653 |a Predictive maintenance 
700 1 |a Schmitt, Robert H  |u Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, 52062 Aachen, Germany; <email>robert.schmitt@wzl-iqs.rwth-aachen.de</email> 
773 0 |t Electronics  |g vol. 14, no. 5 (2025), p. 1055 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176377490/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176377490/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176377490/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch