Multi-Factor Task Assignment and Adaptive Window Enhanced Conflict-Based Search: Multi-Agent Task Assignment and Path Planning for a Smart Factory

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics vol. 14, no. 5 (2025), p. 842
Hlavní autor: Li, Jinyan
Další autoři: Zhao, Yihui, Shen, Yan
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3176380522
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14050842  |2 doi 
035 |a 3176380522 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Li, Jinyan 
245 1 |a Multi-Factor Task Assignment and Adaptive Window Enhanced Conflict-Based Search: Multi-Agent Task Assignment and Path Planning for a Smart Factory 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Multi-Agent Systems (MAS) are widely deployed in smart factory environments, where efficient task assignment and path planning for agents can greatly enhance production efficiency. Existing algorithms usually ignore resource constraints, overly simplify the geometric shape of agents, and perform poorly in large-scale scenarios. In this paper, we propose a Multi-Factor Task Assignment and Adaptive Window Enhanced Conflict-Based Search (MTA-AWECBS) algorithm to solve these problems, which considers the resource constraints and volume of agents, improving the algorithm’s scalability and adaptability. In task assignment, a novel scheme is designed by considering distance cost, maximum travel distances, and maximum number of executable tasks. In path planning, we first propose a new mathematical description of global traffic congestion level. Based on this, an adaptive window is proposed to dynamically adjust the time horizon in the WECBS algorithm, improving search efficiency and solving the deadlock issue. Additionally, based on experimental observations, two optimization strategies are proposed to further improve operation efficiency. The experimental results show that MTA-AWECBS outperforms Token Passing (TP), Token Passing with Task Swaps (TPTSs), and Conflict-Based Steiner Search (CBSS) in handling a large number of tasks and agents, achieving an average <inline-formula>39%</inline-formula> reduction in timestep cost and an average <inline-formula>22%</inline-formula> reduction in total path cost. 
653 |a Assignment problem 
653 |a Planning 
653 |a Searching 
653 |a Efficiency 
653 |a Algorithms 
653 |a Methods 
653 |a Traffic congestion 
653 |a Multiagent systems 
653 |a Manufacturing 
653 |a Industry 4.0 
653 |a Constraints 
653 |a Traveling salesman problem 
653 |a Path planning 
653 |a Factories 
700 1 |a Zhao, Yihui 
700 1 |a Shen, Yan 
773 0 |t Electronics  |g vol. 14, no. 5 (2025), p. 842 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176380522/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176380522/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176380522/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch