An Efficient Dynamic Engineering Implementation Architecture for MIMO Radar System

Guardado en:
Bibliografiske detaljer
Udgivet i:Remote Sensing vol. 17, no. 5 (2025), p. 832
Hovedforfatter: Wen, Ruyue
Andre forfattere: Zhang, Hua, Xu, Luping
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3176388750
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17050832  |2 doi 
035 |a 3176388750 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wen, Ruyue 
245 1 |a An Efficient Dynamic Engineering Implementation Architecture for MIMO Radar System 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Multiple-input multiple-output (MIMO) technology can significantly improve radar system resolution and target detection ability and become the core technology in millimeter-wave radar systems. Each antenna of a MIMO radar system generates a separate data stream, resulting in an exponential increase in the amount of data. The MIMO radar system needs to process these data efficiently and quickly to ensure the real-time performance of the system. Conventional MIMO radar engineering systems have difficulty meeting the efficient processing requirements for large data volume processing, and an efficient dynamic engineering implementation architecture for a MIMO radar system is necessary. In such cases, we analyze the MIMO radar engineering system principle and propose an efficient dynamic MIMO radar engineering implementation architecture, which reduces the data storage step after the Doppler fast Fourier transform (FFT) and improves the storage efficiency and processing speed. In addition, we validate the effectiveness of the method by implementing it on a field-programmable gate array (FPGA) platform. The results show that the method is better than the conventional MIMO radar engineering implementation architecture regarding storage resource consumption and processing speed. Specifically, for the same antenna channel data volume, the MIMO radar system with the proposed architecture achieves a 50% reduction in storage resource consumption and a 15% improvement in processing speed compared to the conventional architecture. The proposed architecture demonstrates better antenna array compatibility across different antenna arrays. This work provides new ideas and methods for the efficient engineering implementation of MIMO radar systems. This work can support the practical application of MIMO radar, especially the engineering applications of large-scale array MIMO radar systems. 
653 |a Antenna arrays 
653 |a Principles 
653 |a Radar data 
653 |a Radar arrays 
653 |a Bandwidths 
653 |a Fast Fourier transformations 
653 |a Data storage 
653 |a Optimization 
653 |a Signal processing 
653 |a Data transmission 
653 |a Field programmable gate arrays 
653 |a Digital signal processors 
653 |a Consumption 
653 |a Performance evaluation 
653 |a Efficiency 
653 |a Doppler effect 
653 |a Fourier transforms 
653 |a MIMO communication 
653 |a Velocity 
653 |a Antennas 
653 |a Radar equipment 
653 |a Target detection 
653 |a Radar 
653 |a Engineering 
653 |a Resource consumption 
653 |a Algorithms 
653 |a Millimeter waves 
653 |a Real time 
653 |a Radar systems 
700 1 |a Zhang, Hua 
700 1 |a Xu, Luping 
773 0 |t Remote Sensing  |g vol. 17, no. 5 (2025), p. 832 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176388750/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176388750/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176388750/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch