Sparse Regularization Least-Squares Reverse Time Migration Based on the Krylov Subspace Method

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 5 (2025), p. 847
Autor principal: Peng, Guangshuai
Otros Autores: Gong, Xiangbo, Wang, Shuang, Cao, Zhiyu, Xu, Zhuo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176391803
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17050847  |2 doi 
035 |a 3176391803 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Peng, Guangshuai 
245 1 |a Sparse Regularization Least-Squares Reverse Time Migration Based on the Krylov Subspace Method 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Least-squares reverse time migration (LSRTM) is an advanced seismic imaging technique that reconstructs subsurface models by minimizing the residuals between simulated and observed data. Mathematically, the LSRTM inversion of the sub-surface reflectivity is a large-scale, highly ill-posed sparse inverse problem, where conventional inversion methods typically lead to poor imaging quality. In this study, we propose a regularized LSRTM method based on the flexible Krylov subspace inversion framework. Through the strategy of the Krylov subspace projection, a basis set for the projection solution is generated, and then the inversion of a large ill-posed problem is expressed as the small matrix optimization problem. With flexible preconditioning, the proposed method could solve the sparse regularization LSRTM, like with the Tikhonov regularization style. Sparse penalization solution is implemented by decomposing it into a set of Tikhonov penalization problems with iterative reweighted norm, and then the flexible Golub–Kahan process is employed to solve the regularization problem in a low-dimensional subspace, thereby finally obtaining a sparse projection solution. Numerical tests on the Valley model and the Salt model validate that the LSRTM based on Krylov subspace method can effectively address the sparse inversion problem of subsurface reflectivity and produce higher-quality imaging results. 
653 |a Subspace methods 
653 |a Imaging techniques 
653 |a Reflectance 
653 |a Regularization 
653 |a Partial differential equations 
653 |a Inverse problems 
653 |a Ill posed problems 
653 |a Regularization methods 
653 |a Algorithms 
653 |a Subspaces 
653 |a Mathematical models 
653 |a Least squares 
653 |a Preconditioning 
700 1 |a Gong, Xiangbo 
700 1 |a Wang, Shuang 
700 1 |a Cao, Zhiyu 
700 1 |a Xu, Zhuo 
773 0 |t Remote Sensing  |g vol. 17, no. 5 (2025), p. 847 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176391803/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176391803/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176391803/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch