Optimization of Orthogonal Waveform Using Memetic Algorithm with Iterative Greedy Code Search

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote Sensing vol. 17, no. 5 (2025), p. 856
Hlavní autor: Wang, Wanbin
Další autoři: Lu, Qian, Zhou, Yun
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3176395066
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17050856  |2 doi 
035 |a 3176395066 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Wanbin 
245 1 |a Optimization of Orthogonal Waveform Using Memetic Algorithm with Iterative Greedy Code Search 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The orthogonality of transmitted waveforms is an important factor affecting the performance of MIMO radar systems. The orthogonal coded signal is a commonly adopted waveform in MIMO radar, and its orthogonality depends on the used orthogonal discrete code sequence set (ODCSs). Among existing optimization algorithms for ODCSs, the results designed by the greedy code search-based memetic algorithm (MA-GCS) have exhibited the best autocorrelation and cross-correlation properties observed so far. Based on MA-GCS, we propose a novel hybrid algorithm called the memetic algorithm with iterative greedy code search (MA-IGCS). Extensions involve replacing the greedy code search used in MA-GCS with a more efficient approach, iterative greedy code search. Furthermore, we propose an “individual uniqueness strategy” and incorporate it into our algorithm to preserve population diversity throughout iteration, thereby preventing premature stagnation and ensuring the continued pursuit of feasible solutions. Finally, the design results of our algorithm are compared with the MA-GCS. Experimental results demonstrate that the MA-IGCS exhibits superior search capability and generates more favorable design results than the MA-GCS. 
653 |a MIMO communication 
653 |a Waveforms 
653 |a Deep learning 
653 |a Algorithms 
653 |a Genetic algorithms 
653 |a Searching 
653 |a Optimization 
653 |a Greedy algorithms 
653 |a Radar equipment 
653 |a Code Division Multiple Access 
653 |a Design 
653 |a Methods 
653 |a Cross correlation 
653 |a Heuristic 
653 |a Optimization algorithms 
653 |a Radar systems 
653 |a Orthogonality 
653 |a Efficiency 
653 |a Parameter estimation 
700 1 |a Lu, Qian 
700 1 |a Zhou, Yun 
773 0 |t Remote Sensing  |g vol. 17, no. 5 (2025), p. 856 
786 0 |d ProQuest  |t Biological Science Index 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176395066/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176395066/fulltextwithgraphics/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176395066/fulltextPDF/embedded/ITVB7CEANHELVZIZ?source=fedsrch