Google Cloud vs. Azure: sentiment analysis accuracy for Polish and English across content types

Сохранить в:
Библиографические подробности
Опубликовано в::Journal of Cloud Computing vol. 14, no. 1 (Dec 2025), p. 17
Опубликовано:
Springer Nature B.V.
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3177318109
003 UK-CbPIL
022 |a 2192-113X 
024 7 |a 10.1186/s13677-025-00742-z  |2 doi 
035 |a 3177318109 
045 2 |b d20251201  |b d20251231 
084 |a 243929  |2 nlm 
245 1 |a Google Cloud vs. Azure: sentiment analysis accuracy for Polish and English across content types 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study investigated the comparative performance of two popular sentiment analysis tools, Azure Sentiment Analysis and Google Cloud Sentiment Analysis, applied to Polish and English text data. The analysis focused on two content types: hotel reviews and tweet comments. The findings demonstrate that the type of text and language analyzed significantly influence the accuracy of sentiment detection. Sentiment analysis tools performed worse on informal and unstructured text like tweet comments compared to structured and formal text like hotel reviews. Additionally, language can influence the performance of sentiment analysis tools. In this study, English showed a slight edge over Polish, particularly for tweet comments. When analyzing tweet comments, the Google Cloud Sentiment Analysis function outperformed Azure Sentiment Analysis in both Polish and English, suggesting better handling of informal and ambiguous language. Furthermore, this research addressed limitations of relying solely on pre-assigned sentiment labels from the tools. A custom labeling method was developed, analyzing the tools’raw sentiment scores (e.g., positive vs negative sentiment score). This method achieved a more granular sentiment classification, especially for informal text data. Compared to pre-assigned labels, this approach provided a more nuanced understanding of sentiment and facilitated a more accurate comparison of the tools’performance, particularly highlighting the one tool’s advantage in handling informal language complexities. By highlighting the challenges associated with informal and unstructured text, as well as the importance of considering language variations, this research contributes to the field of sentiment analysis. The findings and the proposed labeling method present valuable opportunities for future research along promising directions, particularly in sentiment-based decision-making for social media data analysis. 
653 |a Language 
653 |a Data analysis 
653 |a Labeling 
653 |a Labels 
653 |a Unstructured data 
653 |a Sentiment analysis 
773 0 |t Journal of Cloud Computing  |g vol. 14, no. 1 (Dec 2025), p. 17 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3177318109/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3177318109/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch