Semantic Annotation Model and Method Based on Internet Open Dataset

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Intelligent Information Technologies vol. 21, no. 1 (2025), p. 1-20
Autor principal: Gao, Xin
Altres autors: Wang, Yansong, Wang, Fang, Zhang, Baoqun, Hu, Caie, Wang, Jian, Ma, Longfei
Publicat:
IGI Global
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3177449582
003 UK-CbPIL
022 |a 1548-3657 
022 |a 1548-3665 
024 7 |a 10.4018/IJIIT.370966  |2 doi 
035 |a 3177449582 
045 2 |b d20250101  |b d20251231 
100 1 |a Gao, Xin  |u State Grid Beijing Electric Power Company, China 
245 1 |a Semantic Annotation Model and Method Based on Internet Open Dataset 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a Traditional semantic annotation faces the problem of dataset diversity. Different fields and scenarios need to be specially annotated, and annotation work usually requires a lot of manpower and time investment. To meet these challenges, this paper deeply studies the semantic annotation model and method based on internet open datasets, aiming to improve annotation efficiency and accuracy and promote data resource sharing and utilization. This paper selects Common Crawl dataset to provide sufficient training samples; methods such as removing stop words and deduplication are used to preprocess data to improve data quality; a keyword extraction model based on heuristic rules and text context is constructed. In terms of semantic annotation model, this paper constructs a model based on Bidirectional Long Short-Term Memory (BiLSTM), which can make full use of the part-of-speech information of the corpus context, capture the part-of-speech features of the corpus, and generate semantic tags through supervised learning. 
653 |a Accuracy 
653 |a Internet 
653 |a Datasets 
653 |a Ontology 
653 |a Information retrieval 
653 |a Data mining 
653 |a Context 
653 |a Supervised learning 
653 |a Organization theory 
653 |a Labeling 
653 |a Data processing 
653 |a Data analysis 
653 |a Semantic web 
653 |a Annotations 
653 |a Information sharing 
653 |a Efficiency 
653 |a Speech 
653 |a Semantics 
653 |a Decision making 
653 |a Electric power 
653 |a Information systems 
653 |a Natural language processing 
653 |a Methods 
653 |a Resource Description Framework-RDF 
653 |a Information technology 
653 |a Cultural heritage 
700 1 |a Wang, Yansong  |u State Grid Beijing Electric Power Company, China 
700 1 |a Wang, Fang  |u State Grid Beijing Electric Power Company, China 
700 1 |a Zhang, Baoqun  |u State Grid Beijing Electric Power Company, China 
700 1 |a Hu, Caie  |u State Grid Beijing Electric Power Company, China 
700 1 |a Wang, Jian  |u State Grid Beijing Electric Power Company, China 
700 1 |a Ma, Longfei  |u State Grid Beijing Electric Power Company, China 
773 0 |t International Journal of Intelligent Information Technologies  |g vol. 21, no. 1 (2025), p. 1-20 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3177449582/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3177449582/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch