Mcaaco: a multi-objective strategy heuristic search algorithm for solving capacitated vehicle routing problems

Guardado en:
Detalles Bibliográficos
Publicado en:Complex & Intelligent Systems vol. 11, no. 5 (May 2025), p. 211
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3178013175
003 UK-CbPIL
022 |a 2199-4536 
022 |a 2198-6053 
024 7 |a 10.1007/s40747-025-01826-8  |2 doi 
035 |a 3178013175 
045 2 |b d20250501  |b d20250531 
245 1 |a Mcaaco: a multi-objective strategy heuristic search algorithm for solving capacitated vehicle routing problems 
260 |b Springer Nature B.V.  |c May 2025 
513 |a Journal Article 
520 3 |a Vehicle routing is a critical issue in the logistics and distribution industry. In practical applications, optimizing vehicle capacity allocation can significantly improve route optimization performance and service coverage. However, solving this problem remains challenging due to the complex constraints involved. Therefore, to address this real-world challenge, a novel intelligent optimization method, multi-objective capacity adjustment ant colony optimization algorithm (MCAACO), is proposed, which integrates advanced multi-objective optimization strategies, including capacity adjustment operators and crossover operators. Combined with pheromone updating and Pareto front-end optimization, the method effectively resolves the conflict between vehicle capacity constraints and multi-objective optimization. To further enhance the algorithm’s performance, dynamic pheromone updating mechanisms and elite individual retention strategies are proposed. Additionally, an adaptive parameter adjustment strategy is designed to balance global search and local exploitation capabilities. Through a series of experiments, it is demonstrated that compared to multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II), and multi-objective sparrow search algorithm (MOSSA), the proposed MCAACO significantly reduces travel paths by an average of 3.05% and increases vehicle service coverage by an average of 3.2%, while satisfying vehicle capacity constraints. Experimental indicators demonstrate that the breakthrough algorithm significantly addresses the issues of high costs and low efficiency prevalent in the practical logistics distribution industry. 
653 |a Pareto optimization 
653 |a Search algorithms 
653 |a Particle swarm optimization 
653 |a Operators 
653 |a Algorithms 
653 |a Logistics 
653 |a Genetic algorithms 
653 |a Multiple objective analysis 
653 |a Vehicle routing 
653 |a Route optimization 
653 |a Ant colony optimization 
653 |a Constraints 
653 |a Sorting algorithms 
773 0 |t Complex & Intelligent Systems  |g vol. 11, no. 5 (May 2025), p. 211 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3178013175/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3178013175/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch