MSF-TransUNet: A Multi-Scale Feature Fusion Transformer-Based U-Net for Medical Image Segmentation with Uniform Attention

Uloženo v:
Podrobná bibliografie
Vydáno v:Traitement du Signal vol. 42, no. 1 (Feb 2025), p. 531
Hlavní autor: Jiang, Ying
Další autoři: Gong, Lejun, Huang, Hao, Qi, Mingming
Vydáno:
International Information and Engineering Technology Association (IIETA)
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3179774072
003 UK-CbPIL
022 |a 0765-0019 
022 |a 1958-5608 
024 7 |a 10.18280/ts.420145  |2 doi 
035 |a 3179774072 
045 2 |b d20250201  |b d20250228 
100 1 |a Jiang, Ying 
245 1 |a MSF-TransUNet: A Multi-Scale Feature Fusion Transformer-Based U-Net for Medical Image Segmentation with Uniform Attention 
260 |b International Information and Engineering Technology Association (IIETA)  |c Feb 2025 
513 |a Journal Article 
520 3 |a Accurate medical image segmentation is essential for computer-assisted diagnosis and treatment systems. While conventional U-Net architectures and hybrid models integrating U-Net with Transformer networks have demonstrated remarkable performance in automatic segmentation tasks, these approaches frequently face challenges in effectively integrating multi-scale features. Additionally, semantic inconsistencies arising from simple skip connections during the encoding-decoding process remain problematic. To address these limitations, a novel architecture, MSF-TransUNet, is proposed, which incorporates a Feature Fusion Attention Block (FFA-Block) to enhance the fusion of multi-scale features. This approach facilitates dense feature interactions through the integration of uniform attention, achieving this with minimal computational overhead. The experimental results on the Synapse and ACDC medical image segmentation datasets reveal that MSF-TransUNet outperforms existing models. Specifically, the average Hausdorff Distance (HD) on the Synapse dataset is reduced to 22.40 mm, accompanied by an impressive Dice Similarity Coefficient (DSC) of 80.78%. Furthermore, the model achieves a DSC of 91.52% on the ACDC dataset, demonstrating its superior performance. These findings highlight the potential of MSF-TransUNet in advancing medical image segmentation by effectively addressing the challenges of multi-scale feature fusion and semantic consistency. 
653 |a Datasets 
653 |a Accuracy 
653 |a Semantics 
653 |a Image segmentation 
653 |a Medical imaging 
653 |a Medical research 
653 |a Attention 
653 |a Encoding-Decoding 
653 |a Metric space 
653 |a Learning 
653 |a Efficiency 
700 1 |a Gong, Lejun 
700 1 |a Huang, Hao 
700 1 |a Qi, Mingming 
773 0 |t Traitement du Signal  |g vol. 42, no. 1 (Feb 2025), p. 531 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3179774072/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3179774072/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch