Lightweight CA-YOLOv7-Based Badminton Stroke Recognition: A Real-Time and Accurate Behavior Analysis Method

保存先:
書誌詳細
出版年:International Journal of Advanced Computer Science and Applications vol. 16, no. 2 (2025)
第一著者: PDF
出版事項:
Science and Information (SAI) Organization Limited
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3180200304
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160235  |2 doi 
035 |a 3180200304 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Lightweight CA-YOLOv7-Based Badminton Stroke Recognition: A Real-Time and Accurate Behavior Analysis Method 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of sports technology, accurate and real-time recognition of badminton stroke postures has become essential for athlete training and match analysis. This study presents an improved YOLOv7-based method for badminton stroke posture recognition, addressing limitations in accuracy, real-time performance, and automation. To optimize the model, pruning techniques were applied to the backbone structure, significantly enhancing processing speed for real-time demands. A parameter-free attention module was integrated to improve feature extraction without increasing model complexity. Furthermore, key stroke action nodes were defined, and a joint point matching module was introduced to enhance recognition accuracy. Experimental results show that the improved model achieved a mAP@0.5 of 0.955 and a processing speed of 44 frames per second, demonstrating its capability to deliver precise and efficient badminton stroke recognition. This research provides valuable technical support for coaches and athletes, enabling better analysis and optimization of stroke techniques. 
653 |a Modules 
653 |a Athletes 
653 |a Real time 
653 |a Recognition 
653 |a Optimization 
653 |a Teaching 
653 |a Motion capture 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Sports training 
653 |a Automation 
653 |a Coaches & managers 
653 |a Feedback 
653 |a Badminton 
653 |a Processing speed 
653 |a Efficiency 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 2 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180200304/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180200304/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch