Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Advanced Computer Science and Applications vol. 16, no. 2 (2025)
Hlavní autor: PDF
Vydáno:
Science and Information (SAI) Organization Limited
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3180200370
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160284  |2 doi 
035 |a 3180200370 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Early detection and precise prediction are essential in medical diagnosis, particularly for diseases such as diabetic nephropathy (DN), which tends to go undiagnosed at its early stages. Conventional diagnostic techniques may not be sensitive and timely, and hence, early intervention might be difficult. This research delves into the application of a hybrid Autoencoder-LSTM model to improve DN detection. The Autoencoder (AE) unit compresses clinical data with preservation of important features and dimensionality reduction. The Long Short-Term Memory (LSTM) network subsequently processes temporal patterns and sequential dependency, enhancing feature learning for timely diagnosis. Clinical and demographic information from diabetic patients are included in the dataset, evaluating variables such as age, sex, type of diabetes, duration of disease, smoking, and alcohol use. The model is done using Python and exhibits better performance compared to conventional methods. The Hybrid AE-LSTM model proposed here attains an accuracy of 99.2%, which is a 6.68% improvement over Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression. The findings demonstrate the power of deep learning in detecting DN early and accurately and present a novel tool for proactive disease control among diabetic patients. 
653 |a Diagnosis 
653 |a Deep learning 
653 |a Machine learning 
653 |a Support vector machines 
653 |a Disease control 
653 |a Patients 
653 |a Diabetes 
653 |a Accuracy 
653 |a Hyperglycemia 
653 |a Computer science 
653 |a Disease 
653 |a Optimization techniques 
653 |a Diabetic nephropathy 
653 |a Glucose 
653 |a Biomarkers 
653 |a Data analysis 
653 |a Kidneys 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 2 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180200370/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180200370/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch