Optimizing the GRU-LSTM Hybrid Model for Air Temperature Prediction in Degraded Wetlands and Climate Change Implications

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 2 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3180200410
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160272  |2 doi 
035 |a 3180200410 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Optimizing the GRU-LSTM Hybrid Model for Air Temperature Prediction in Degraded Wetlands and Climate Change Implications 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Accurate air temperature prediction is critical, particularly for micro air temperatures. The temperature of micro air changes quickly. Micro and macro air temperatures vary, particularly in degraded wetlands. By predicting air temperature, climate change in a degraded wetland environment can be predicted earlier. Furthermore, micro and macro air temperatures are drought index parameters. Knowing the drought index can help you avoid disasters like fires and floods. However, the right indicators for predicting micro or macro temperatures have yet to be found. LSTM excels at tasks requiring complex long-term memory, whereas GRU excels at tasks requiring rapid processing. We proposed a deep learning strategy based on the GRU-LSTM Hybrid model. Both of these deep learning models are excellent for predicting time series. The performance of this hybrid model is affected by changes in model indicators. The preprocessing stage, the number of input parameters, and the presence or absence of a Dropout Layer in the model architecture are among the most influential indicators of model performance. The best macro temperature prediction performance was obtained using 12 monthly average data to predict the next month’s temperature, yielding an RMSE of 0.056807, MAE of 0.046592, and R2 of 0.989371. This model also performed well in predicting daily micro temperature, with an RMSE of 0.227086, MAE of 0.190801, and R2 of 0.981802. 
653 |a Indicators 
653 |a Climate change 
653 |a Memory tasks 
653 |a Deep learning 
653 |a Parameters 
653 |a Air temperature 
653 |a Wetlands 
653 |a Task complexity 
653 |a Drought 
653 |a Flood predictions 
653 |a Accuracy 
653 |a Datasets 
653 |a Computer science 
653 |a Time series 
653 |a Efficiency 
653 |a Statistical analysis 
653 |a Fourier transforms 
653 |a Temperature 
653 |a Sensors 
653 |a Geophysics 
653 |a Data collection 
653 |a Climate science 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 2 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180200410/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180200410/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch