Transfer Learning for Named Entity Recognition in Setswana Language Using CNN-BiLSTM Model

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:International Journal of Advanced Computer Science and Applications vol. 16, no. 2 (2025)
Váldodahkki: PDF
Almmustuhtton:
Science and Information (SAI) Organization Limited
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3180200419
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160249  |2 doi 
035 |a 3180200419 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Transfer Learning for Named Entity Recognition in Setswana Language Using CNN-BiLSTM Model 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a This research proposes a hybrid approach for Named-Entity Recognition (NER) for Setswana, a low-resource language, that combines a bidirectional long short-term memory (BiLSTM) with a transfer learning model and a convolutional neural network (CNN). Among the 11 official languages of South Africa, Setswana is a morphologically rich language that is underrepresented in the field of deep learning for natural language processing (NLP). The fact that it is a language with limited resources is one of the reasons for this gap. The suggested NER hybrid transfer learning approach and an open-source Setswana NER dataset from the South African Centre for Digital Language Resources (SADiLaR), which contains an estimated 230,000 tokens overall, are used in this research to close this gap. Five NER models are created for the study and contrast with one another to determine which performs best. The performance of the top model is then contrasted with that of the baseline models. The latter three models are trained at sentence-level, whereas the first two are at word-level. Sentence-level models interpret the entire sentence as a series of word embeddings, while word-level models represent each word as a character sequence or word embedding. CNN is the first model, and CNN-BiLSTM transfer learning based on Word level is the second. Sentence-Level is the basis for the last three CNN, CNN-BiLSTM Transfer Learning, and CNN-BiLSTM models. With 99% of accuracy, the CNN-BiLSTM Transfer Learning sentence-level outperforms all other models. Furthermore, it outperforms the state-of-the-art models for Setswana in the literature that were created using the same dataset. 
651 4 |a South Africa 
651 4 |a Southern Africa 
653 |a Datasets 
653 |a Deep learning 
653 |a Machine learning 
653 |a Natural language processing 
653 |a Words (language) 
653 |a Recognition 
653 |a Artificial neural networks 
653 |a Sentences 
653 |a Computer science 
653 |a Language policy 
653 |a Morphology 
653 |a Tswana language 
653 |a African languages 
653 |a Computers 
653 |a Bantu languages 
653 |a Short term memory 
653 |a Neural networks 
653 |a Linguistics 
653 |a Semantics 
653 |a Official languages 
653 |a Acknowledgment 
653 |a Bidirectionality 
653 |a Learning 
653 |a Languages 
653 |a Language acquisition 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 2 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180200419/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180200419/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch