AI-Powered Intelligent Speech Processing: Evolution, Applications and Future Directions

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:International Journal of Advanced Computer Science and Applications vol. 16, no. 2 (2025)
Egile nagusia: PDF
Argitaratua:
Science and Information (SAI) Organization Limited
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3180200463
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160291  |2 doi 
035 |a 3180200463 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a AI-Powered Intelligent Speech Processing: Evolution, Applications and Future Directions 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a This paper provides an overview of the historical evolution of speech recognition, synthesis, and processing technologies, highlighting the transition from statistical models to deep learning-based models. Firstly, the paper reviews the early development of speech processing, tracing it from the rule-based and statistical models of the 1960s to the deep learning models, such as deep neural networks (DNN), convolutional neural networks (CNN), and recurrent neural networks (RNN), which have dramatically reduced error rates in speech recognition and synthesis. It emphasizes how these advancements have led to more natural and accurate speech outputs. Then, the paper examines three key learning paradigms used in speech recognition: supervised, self-supervised, and semi-supervised learning. Supervised learning relies on large amounts of labeled data, while self-supervised and semi-supervised learning leverage unlabeled data to improve generalization and reduce reliance on manually labeled datasets. These paradigms have significantly advanced the field of speech recognition. Furthermore, the paper explores the wide-ranging applications of AI-driven speech processing, including smart homes, intelligent transportation, healthcare, and finance. By integrating AI with technologies like the Internet of Things (IoT) and big data, speech technology is being applied in voice assistants, autonomous vehicles, and speech-controlled devices. The paper also addresses the current challenges facing intelligent speech processing, such as performance issues in noisy environments, the scarcity of data for low-resource languages, and concerns related to data privacy, algorithmic bias, and legal responsibility. Overcoming these challenges will be crucial for the continued progress of the field. Finally, the paper looks to the future, predicting further improvements in speech processing technology through advancements in hardware and algorithms. It anticipates increased focus on personalized services, real-time speech processing, and multilingual support, along with growing integration with other technologies such as augmented reality. Despite the technical and ethical challenges, AI-driven speech processing is expected to continue its transformative impact on society and industry. 
651 4 |a Macao 
653 |a Augmented reality 
653 |a Internet of Things 
653 |a Big Data 
653 |a Artificial neural networks 
653 |a Recurrent neural networks 
653 |a Speech processing 
653 |a Smart buildings 
653 |a Algorithms 
653 |a Semi-supervised learning 
653 |a Deep learning 
653 |a Machine learning 
653 |a Real time 
653 |a Ethical standards 
653 |a Synthesis 
653 |a Statistical models 
653 |a Speech recognition 
653 |a Language 
653 |a Personality traits 
653 |a Computer science 
653 |a Personality 
653 |a Text editing 
653 |a Speaking 
653 |a Human-computer interaction 
653 |a Technology 
653 |a Computers 
653 |a Artificial intelligence 
653 |a Voice recognition 
653 |a Neural networks 
653 |a Natural language processing 
653 |a Linguistics 
653 |a Consciousness 
653 |a Speech 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 2 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180200463/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180200463/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch