Gene Expression Programming With Structured Reusability

Gardado en:
Detalles Bibliográficos
Publicado en:International Journal of Cognitive Informatics & Natural Intelligence. vol. 19, no. 1 (2025), p. 1-28
Autor Principal: Zheng, YaPing
Outros autores: He, Pei, Chang, Chi-Chang, Li, Kangshun
Publicado:
IGI Global
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3180558195
003 UK-CbPIL
022 |a 1557-3958 
022 |a 1557-3966 
024 7 |a 10.4018/IJCINI.371417  |2 doi 
035 |a 3180558195 
045 2 |b d20250101  |b d20251231 
100 1 |a Zheng, YaPing  |u Guangzhou University, China 
245 1 |a Gene Expression Programming With Structured Reusability 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a In the field of evolutionary computation, gene expression programming (GEP) has been favored by the public because of its straightforward encoding method. Due to the coding rules for the head and tail on gene, the ability of gene to be constructed as an expression is limited, thereby limiting the expressiveness of individuals. In this article, a variant that uses the standard GEP individual structure and is based on code reuse strategy is proposed to maintain the concise individual representation advantage of GEP and improve the expressive ability of individual. This method can improve the accuracy of the individual and reduce the expression tree complexity. In addition, experiments conducted to predict the recurrence of cervical cancer and malignancy of breast cancer have demonstrated that the predicted performance of GEP and gene expression programming with structured reusability (SR-GEP) has performed better than that of C5.0, but SR-GEP performs best. 
653 |a Stand structure 
653 |a Cervical cancer 
653 |a Evolutionary computation 
653 |a Gene expression 
653 |a Performance prediction 
653 |a Genetic algorithms 
653 |a Chromosomes 
653 |a Programming 
653 |a Standardization 
653 |a Informatics 
653 |a Code reuse 
653 |a Malignancy 
653 |a Efficiency 
700 1 |a He, Pei  |u Guangzhou University, China 
700 1 |a Chang, Chi-Chang  |u School of Medical Informatics, Chung Shan Medical University & IT Office, Chung Shan Medical University Hospital, Taichung, Taiwan & Department of Information Management, Ming Chuan University, Taoyuan City, Taiwan 
700 1 |a Li, Kangshun  |u Dongguan City University, China 
773 0 |t International Journal of Cognitive Informatics & Natural Intelligence.  |g vol. 19, no. 1 (2025), p. 1-28 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180558195/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180558195/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch