Education 4.0 : défi de la révolution digitale dans l’actualisation des connaissances et compétences des cursus de génie des procédés

Guardat en:
Dades bibliogràfiques
Publicat a:MATEC Web of Conferences vol. 407 (2025)
Autor principal: Schaer, Eric
Altres autors: Jean-Marc Commenge, Perrin, Laurent, Laurent, André
Publicat:
EDP Sciences
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3180657650
003 UK-CbPIL
022 |a 2274-7214 
022 |a 2261-236X 
024 7 |a 10.1051/matecconf/202540703001  |2 doi 
035 |a 3180657650 
045 2 |b d20250101  |b d20251231 
084 |a 268433  |2 nlm 
100 1 |a Schaer, Eric 
245 1 |a Education 4.0 : défi de la révolution digitale dans l’actualisation des connaissances et compétences des cursus de génie des procédés 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a Data management technologies, communication, and connection techniques, and the disruptive innovations of Industry 4.0 processes imply a skilled population of operators, technicians, and engineers proficient in the implementation and consequences of these digital technologies.This article examines the curriculum used in initial training to teach the up-to-date skills required by the actors in the industrial field of chemical and process engineering to adapt to industrial needs and societal changes generated by the disruption of digital technologies.A first immediate and unanimous recommendation is to mutualize the currently disjointed languages between the chemical and process engineering community and that of artificial intelligence and digitization experts, in terms of mutual reciprocal understanding.A review of the new skills and knowledge needed to adapt to Industry 4.0 is then presented. A pedagogical framework of the main components of Education 4.0 is retained. It strategically incorporates diverse skills such as mathematics, modelling, artificial intelligence (AI), simulation, internet of things (IoT), information technology, simulation, neural networks, mega data, robotics, cloud computing, machine learning, deep learning, and additive manufacturing for the learning experience, to respond to today’s Industry 4.0 requirements. A practical, applicable, and acceptable version of this framework is formulated according to the relative relevance of each family of components, assessed on a Blum scale based on expert opinion. By way of example, a detailed schematic representation of data literacy skills and competencies can be obtained for the “data management” component.A review of experiences of introducing data science teaching methods into chemical and process engineering curricula is reported. Two proposals for application to examples extended to the AI component in the chemical engineering departments of the Universities of Columbia (USA) and Leuwen (B) are detailed.Chemical engineering and process safety are connected interdisciplinary subjects. As such, a comprehensive syllabus in process safety included in a chemical engineering curriculum should cover a wide range of topics, from basic physical and chemical phenomena and unit operations to complex and increasingly automated systems, designed and operated by humans. Classical risk analysis and assessment methods and techniques are traditionally used in the application of good qualitative, semi-quantitative, and quantitative assessment practices. However, these conventional methods have their limitations. The inclusion of risk dynamics, in conjunction with recent and accurate information, in these assessment methods is therefore now a necessity to make 4.0 operators and various stakeholders aware of the requirements of process safety 4.0. It is proposed that up-to-date pedagogical content should be limited to the contribution of simulation, Bayesian networks, and fuzzy logic to the dynamic completeness of classical risk analysis methods.Finally, the 4.0 digital revolution has also generated a variety of digital teaching aids. Some pedagogical application examples limited to the two teaching aids Digital Twin and Machine learning are discussed. 
653 |a Pedagogy 
653 |a Internet of Things 
653 |a Information literacy 
653 |a Curricula 
653 |a Skills 
653 |a Industry 4.0 
653 |a Machine learning 
653 |a Risk analysis 
653 |a Industrial safety 
653 |a Instructional aids 
653 |a Colleges & universities 
653 |a Risk assessment 
653 |a Data management 
653 |a Robotics 
653 |a Teaching aids & devices 
653 |a Simulation 
653 |a Chemical engineering 
653 |a Bayesian analysis 
653 |a Neural networks 
653 |a Process engineering 
653 |a Artificial intelligence 
653 |a Automation 
653 |a Operators (mathematics) 
653 |a Data science 
653 |a Science education 
653 |a Education 
653 |a Cloud computing 
653 |a Digital twins 
653 |a Teaching methods 
653 |a Industrial applications 
653 |a Deep learning 
653 |a Interdisciplinary subjects 
653 |a Digitization 
653 |a Digital technology 
700 1 |a Jean-Marc Commenge 
700 1 |a Perrin, Laurent 
700 1 |a Laurent, André 
773 0 |t MATEC Web of Conferences  |g vol. 407 (2025) 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180657650/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180657650/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch