Addressing the Autocorrelation Problem in the Poisson Regression Model: Theory and Numerical Illustrations

Guardado en:
Detalles Bibliográficos
Publicado en:Pakistan Journal of Statistics and Operation Research vol. 21, no. 1 (2025), p. 39
Autor principal: Sultan, Mustafa Haitham
Otros Autores: Amri, Fethi, Hamed, Mohamed S
Publicado:
University of the Punjab, College of Statistical & Actuarial Science
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3180705083
003 UK-CbPIL
022 |a 1816-2711 
022 |a 2220-5810 
024 7 |a 10.18187/pjsor.v21i1.3909  |2 doi 
035 |a 3180705083 
045 2 |b d20250101  |b d20250331 
084 |a 154929  |2 nlm 
100 1 |a Sultan, Mustafa Haitham  |u University of Tunis el manar, faculty of sciences of Tunis, Tunis 
245 1 |a Addressing the Autocorrelation Problem in the Poisson Regression Model: Theory and Numerical Illustrations 
260 |b University of the Punjab, College of Statistical & Actuarial Science  |c 2025 
513 |a Journal Article 
520 3 |a The Poisson regression model (PRM) is usually applied in the situations where the dependent variable is in the form of count data. The purpose of this study is to compare methods of estimation for the Poisson Regression Model's first-order autocorrelation (AR(1)). The Kibria and Lukman Estimator Method (KL), Generalized Least Square Estimator Method (GLS), the Liu Estimator Method (LE), and the Reduction Liu Estimator Method (RLE) were employed. Monte Carlo simulations are used to compare these methods. The data generated follows Poisson Regression Model, however because of sample size and autocorrelation levels among other things, to create first-order autocorrelation among random errors. The Mean square Error (MSE) criterion was used for comparison. The methods are also evaluated on actual data, Moreover, the findings demonstrated that the KL approach is superior to the other estimation techniques in terms of its performance. 
653 |a Random errors 
653 |a Autocorrelation 
653 |a Regression models 
653 |a Poisson density functions 
653 |a Monte Carlo simulation 
653 |a Dependent variables 
653 |a Aircraft 
653 |a Mean square errors 
653 |a Simulation 
653 |a Regression analysis 
653 |a Random variables 
653 |a Binomial distribution 
653 |a Researchers 
653 |a Methods 
700 1 |a Amri, Fethi  |u Unit of Research 3E, Higher Institute of Management of Gabes (I.S.G.), University of Gabes, Gabes, Tunisia 
700 1 |a Hamed, Mohamed S  |u Department of Business Administration, Gulf Colleges, KSA 
773 0 |t Pakistan Journal of Statistics and Operation Research  |g vol. 21, no. 1 (2025), p. 39 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180705083/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180705083/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch