Gradual Optimization of University Course Scheduling Problem Using Genetic Algorithm and Dynamic Programming

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 3 (2025), p. 158
Autor principal: Xu, Han
Otros Autores: Wang, Dian
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3181340928
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18030158  |2 doi 
035 |a 3181340928 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Xu, Han 
245 1 |a Gradual Optimization of University Course Scheduling Problem Using Genetic Algorithm and Dynamic Programming 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The university course scheduling problem (UCSP) is a challenging combinatorial optimization problem that requires optimization of the quality of the schedule and resource utilization while meeting multiple constraints involving courses, teachers, students, and classrooms. Although various algorithms have been applied to solve the UCSP, most of the existing methods are limited to scheduling independent courses, neglecting the impact of joint courses on the overall scheduling results. To address this limitation, this paper proposed an innovative mixed-integer linear programming model capable of handling the complex constraints of both joint and independent courses simultaneously. To improve the computational efficiency and solution quality, a hybrid method combining a genetic algorithm and dynamic programming, named POGA-DP, was designed. Compared to the traditional algorithms, POGA-DP introduced exchange operations based on a judgment mechanism and mutation operations with a forced repair mechanism to effectively avoid local optima. Additionally, by incorporating a greedy algorithm for classroom allocation, the utilization of classroom resources was further enhanced. To verify the performance of the new method, this study not only tested it on real UCSP instances at Beijing Forestry University but also conducted comparative experiments with several classic algorithms, including a traditional GA, Ant Colony Optimization (ACO), the Producer–Scrounger Method (PSM), and particle swarm optimization (PSO). The results showed that POGA-DP improved the scheduling quality by 46.99% compared to that of the traditional GA and reduced classroom usage by up to 29.27%. Furthermore, POGA-DP increased the classroom utilization by 0.989% compared to that with the traditional GA and demonstrated an outstanding performance in solving joint course scheduling problems. This study also analyzed the stability of the scheduling results, revealing that POGA-DP maintained a high level of consistency in scheduling across adjacent weeks, proving its feasibility and stability in practical applications. In conclusion, POGA-DP outperformed the existing algorithms in the UCSP, making it particularly suitable for efficient scheduling under complex constraints. 
653 |a Teaching 
653 |a Particle swarm optimization 
653 |a Linear programming 
653 |a Integer programming 
653 |a Students 
653 |a Combinatorial analysis 
653 |a Optimization 
653 |a Greedy algorithms 
653 |a Decomposition 
653 |a Ant colony optimization 
653 |a Heuristic 
653 |a Teachers 
653 |a Efficiency 
653 |a Scheduling 
653 |a Dynamic programming 
653 |a Classrooms 
653 |a Genetic algorithms 
653 |a Resource scheduling 
653 |a Methods 
653 |a Stability 
653 |a Mixed integer 
653 |a Resource utilization 
653 |a Constraints 
700 1 |a Wang, Dian 
773 0 |t Algorithms  |g vol. 18, no. 3 (2025), p. 158 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181340928/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181340928/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181340928/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch