Construction of a Multi-Source, Heterogeneous Rice Disease and Pest Knowledge Graph Based on the MARBC Model

Spremljeno u:
Bibliografski detalji
Izdano u:Agronomy vol. 15, no. 3 (2025), p. 566
Glavni autor: Li, Chunchun
Daljnji autori: Yang, Siyi, Liang, Dong, Chen, Peng, Dong, Wei
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3181349338
003 UK-CbPIL
022 |a 2073-4395 
024 7 |a 10.3390/agronomy15030566  |2 doi 
035 |a 3181349338 
045 2 |b d20250101  |b d20251231 
084 |a 231332  |2 nlm 
100 1 |a Li, Chunchun  |u School of Internet, Anhui University, Hefei 230039, China; <email>y17681045717@126.com</email> (S.Y.); <email>dliang@ahu.edu.cn</email> (D.L.); <email>pchen@ahu.edu.cn</email> (P.C.); National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei 230601, China 
245 1 |a Construction of a Multi-Source, Heterogeneous Rice Disease and Pest Knowledge Graph Based on the MARBC Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Diseases and pests have a significant impact on rice production, affecting both yield and quality. Therefore, their effective management and control are crucial for successful rice cultivation. However, current research based on rice diseases and pests (RDPs) encounters challenges such as data scarcity, the integration of multi-source heterogeneous data and usability issues related to knowledge graphs. To tackle these issues, this paper proposes a novel entity and relationship extraction model called Multi-head Attention RoBERTa BiLSTM CRF (MARBC). Specifically, the MARBC model utilizes RoBERTa to obtain related word vector representations, and then employs BiLSTM to extract features from within the input sequences. By integrating a multi-head attention mechanism, the model retrieves contextual information and relevance from the text, enhancing the accuracy and depth of the knowledge graph. Additionally, Conditional Random Fields are used to model sequence labeling for entities and relationships. Experimental results demonstrate the model’s impressive performance, achieving precision, recall, and F1 scores of 95.31%, 93.58%, and 94.44%, respectively. Furthermore, this paper constructs a dedicated knowledge graph for RDPs from both ontology and data layers. By effectively integrating and organizing multi-source heterogeneous RDP data, this paper provides valuable resources and decision support for agricultural researchers and farmers. 
653 |a Construction accidents & safety 
653 |a Pathogens 
653 |a Accuracy 
653 |a Deep learning 
653 |a Conditional random fields 
653 |a Ontology 
653 |a Information retrieval 
653 |a Grain cultivation 
653 |a Agricultural research 
653 |a Relational data bases 
653 |a Crop diseases 
653 |a Automation 
653 |a Visualization 
653 |a Knowledge representation 
653 |a Crop production 
653 |a Graphs 
653 |a Pests 
653 |a Rice 
653 |a Knowledge management 
653 |a Data collection 
653 |a Encyclopedias 
653 |a Cultivation 
700 1 |a Yang, Siyi  |u School of Internet, Anhui University, Hefei 230039, China; <email>y17681045717@126.com</email> (S.Y.); <email>dliang@ahu.edu.cn</email> (D.L.); <email>pchen@ahu.edu.cn</email> (P.C.) 
700 1 |a Liang, Dong  |u School of Internet, Anhui University, Hefei 230039, China; <email>y17681045717@126.com</email> (S.Y.); <email>dliang@ahu.edu.cn</email> (D.L.); <email>pchen@ahu.edu.cn</email> (P.C.); National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei 230601, China 
700 1 |a Chen, Peng  |u School of Internet, Anhui University, Hefei 230039, China; <email>y17681045717@126.com</email> (S.Y.); <email>dliang@ahu.edu.cn</email> (D.L.); <email>pchen@ahu.edu.cn</email> (P.C.); National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei 230601, China 
700 1 |a Dong, Wei  |u Agricultural Economy and Information Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; <email>dw06@163.com</email> 
773 0 |t Agronomy  |g vol. 15, no. 3 (2025), p. 566 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181349338/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181349338/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181349338/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch