Least Cost Vehicle Charging in a Smart Neighborhood Considering Uncertainty and Battery Degradation

Guardado en:
Detalles Bibliográficos
Publicado en:Batteries vol. 11, no. 3 (2025), p. 104
Autor principal: Schade, Curd
Otros Autores: Aliasghari, Parinaz, Ruud Egging-Bratseth, Pfister, Clara
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3181371213
003 UK-CbPIL
022 |a 2313-0105 
024 7 |a 10.3390/batteries11030104  |2 doi 
035 |a 3181371213 
045 2 |b d20250101  |b d20251231 
100 1 |a Schade, Curd  |u Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getz Veg 3, 7491 Trondheim, Norway<email>parinaz.aliasghari@ntnu.no</email> (P.A.); ; Workgroup for Infrastructure Policy (WIP), Straße des 17. Juni 135, 10623 Berlin, Germany 
245 1 |a Least Cost Vehicle Charging in a Smart Neighborhood Considering Uncertainty and Battery Degradation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The electricity landscape is constantly evolving, with intermittent and distributed electricity supply causing increased variability and uncertainty. The growth in electric vehicles, and electrification on the demand side, further intensifies this issue. Managing the increasing volatility and uncertainty is of critical importance to secure and minimize costs for the energy supply. Smart neighborhoods offer a promising solution to locally manage the supply and demand of energy, which can ultimately lead to cost savings while addressing intermittency features. This study assesses the impact of different electric vehicle charging strategies on smart grid energy costs, specifically accounting for battery degradation due to cycle depths, state of charge, and uncertainties in charging demand and electricity prices. Employing a comprehensive evaluation framework, the research assesses the impacts of different charging strategies on operational costs and battery degradation. Multi-stage stochastic programming is applied to account for uncertainties in electricity prices and electric vehicle charging demand. The findings demonstrate that smart charging can significantly reduce expected energy costs, achieving a 10% cost decrease and reducing battery degradation by up to 30%. We observe that the additional cost reductions from allowing Vehicle-to-Grid supply compared to smart charging are small. Using the additional flexibility aggravates degradation, which reduces the total cost benefits. This means that most benefits are obtainable just by optimized the timing of the charging itself. 
653 |a Arbitrage 
653 |a Electricity 
653 |a Energy costs 
653 |a Costs 
653 |a Market prices 
653 |a Buildings 
653 |a Aging 
653 |a Electric vehicles 
653 |a Vehicle-to-grid 
653 |a Renewable resources 
653 |a Electricity pricing 
653 |a Stochastic models 
653 |a Electric power demand 
653 |a Energy storage 
653 |a Smart grid 
653 |a Operating costs 
653 |a Alternative energy sources 
653 |a Degradation 
653 |a Neighborhoods 
653 |a Uncertainty 
653 |a Electric vehicle charging 
653 |a Battery cycles 
653 |a Stochastic programming 
653 |a Electric power distribution 
700 1 |a Aliasghari, Parinaz  |u Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getz Veg 3, 7491 Trondheim, Norway<email>parinaz.aliasghari@ntnu.no</email> (P.A.); ; Workgroup for Infrastructure Policy (WIP), Straße des 17. Juni 135, 10623 Berlin, Germany 
700 1 |a Ruud Egging-Bratseth  |u SINTEF Industry, Sustainable Energy Technology, Richard Birkelands vei 2B, 7034 Trondheim, Norway 
700 1 |a Pfister, Clara  |u Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getz Veg 3, 7491 Trondheim, Norway<email>parinaz.aliasghari@ntnu.no</email> (P.A.); ; Workgroup for Infrastructure Policy (WIP), Straße des 17. Juni 135, 10623 Berlin, Germany 
773 0 |t Batteries  |g vol. 11, no. 3 (2025), p. 104 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181371213/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181371213/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181371213/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch