Classification of Cloud Particle Habits Using Transfer Learning with a Deep Convolutional Neural Network

Guardat en:
Dades bibliogràfiques
Publicat a:Atmosphere vol. 16, no. 3 (2025), p. 294
Autor principal: Xu, Yefeng
Altres autors: Jiao, Ruili, Li, Qiubai, Huang, Minsong
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3181383453
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16030294  |2 doi 
035 |a 3181383453 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Xu, Yefeng  |u China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; <email>yefeng.xu@bistu.edu.cn</email>; Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China; School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China 
245 1 |a Classification of Cloud Particle Habits Using Transfer Learning with a Deep Convolutional Neural Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The habits of cloud particles are a significant factor impacting microphysical processes in clouds. The accurate identification of cloud particle shapes within clouds is a fundamental requirement for calculating various cloud microphysical parameters. In this study, we established a cloud particle image dataset encompassing nine distinct habit categories, totaling 8100 images. These images were captured using three probes with varying resolutions: the Cloud Particle Imager (CPI), the Two-Dimensional Stereo Probe (2D-S), and the High-Volume Precipitation Spectrometer (HVPS). Furthermore, this study performs a comparative analysis of ten different transfer learning (TL) models based on this dataset. It was found that the VGG-16 model exhibits the highest classification accuracy, reaching 97.90%. This model also demonstrates the highest recall, precision, and F1 measure. The results indicate that the VGG-16 model can reliably classify the shapes of ice crystal particles measured by both line scan imagers (2D-S, HVPS) and an area scan imager (CPI). 
651 4 |a China 
653 |a Cloud microphysics 
653 |a Automatic classification 
653 |a Accuracy 
653 |a Habits 
653 |a Comparative analysis 
653 |a Deep learning 
653 |a Datasets 
653 |a Classification 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Cloud particles 
653 |a Clouds 
653 |a Machine learning 
653 |a Crystals 
653 |a Radiation 
653 |a Transfer learning 
653 |a Doppler effect 
653 |a Precipitation 
653 |a Remote sensing 
653 |a Ice crystals 
653 |a Atmospheric sciences 
653 |a Images 
653 |a Methods 
653 |a Algorithms 
700 1 |a Jiao, Ruili  |u School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China 
700 1 |a Li, Qiubai  |u School of Earth Sciences, Yunnan University, Kunming 650091, China; <email>liqiubai@stu.ynu.edu.cn</email>; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 
700 1 |a Huang, Minsong  |u China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; <email>yefeng.xu@bistu.edu.cn</email>; Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), China Meteorological Administration, Beijing 100081, China 
773 0 |t Atmosphere  |g vol. 16, no. 3 (2025), p. 294 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181383453/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181383453/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181383453/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch