A Novel, Self-Adaptive, Multiclass Priority Algorithm with VM Clustering for Efficient Cloud Resource Allocation

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Computers vol. 14, no. 3 (2025), p. 81
Egile nagusia: Hicham Ben Alla
Beste egile batzuk: Said Ben Alla, Ezzati, Abdellah, Touhafi, Abdellah
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3181425362
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14030081  |2 doi 
035 |a 3181425362 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Hicham Ben Alla  |u LAVETE Laboratory, Mathematics and Computer Science Department, Science and Technical Faculty, Hassan 1 University, Settat 26000, Morocco; <email>said.benalla@uhp.ac.ma</email> (S.B.A.); <email>abdellah.ezzati@uhp.ac.ma</email> (A.E.) 
245 1 |a A Novel, Self-Adaptive, Multiclass Priority Algorithm with VM Clustering for Efficient Cloud Resource Allocation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Priority in task scheduling and resource allocation for cloud computing has attracted significant attention from the research community. However, traditional scheduling algorithms often lack the ability to differentiate between tasks with varying levels of importance. This limitation presents a challenge when cloud servers must handle diverse tasks with distinct priority classes and strict quality of service requirements. To address these challenges in cloud computing environments, particularly within the infrastructure of service models, we propose a novel, self-adaptive, multiclass priority algorithm with VM clustering for resource allocation. This algorithm implements a four-tiered prioritization system to optimize key objectives, including makespan and energy consumption, while simultaneously optimizing resource utilization, degree of imbalance, and waiting time. Additionally, we propose a resource prioritization and load-balancing model based on the clustering technique. The proposed work was validated through multiple simulations using the CloudSim simulator, comparing its performance against well-known task scheduling algorithms. The simulation results and analysis demonstrate that the proposed algorithm effectively optimizes makespan and energy consumption. Specifically, our work achieved percentage improvements ranging from +0.97% to +26.80% in makespan and +3.68% to +49.49% in energy consumption while also improving other performance metrics, including throughput, resource utilization, and load balancing. This novel model demonstrably enhances task scheduling and resource allocation efficiency, particularly in complex scenarios with tight deadlines and multiclass priorities. 
653 |a Scheduling 
653 |a Computer centers 
653 |a Task scheduling 
653 |a Performance measurement 
653 |a Clustering 
653 |a Cloud computing 
653 |a Optimization 
653 |a Resource allocation 
653 |a Resource scheduling 
653 |a Queuing 
653 |a Energy efficiency 
653 |a Quality of service 
653 |a Algorithms 
653 |a Resource utilization 
653 |a Energy consumption 
653 |a Performance evaluation 
653 |a Workloads 
653 |a Load balancing 
653 |a Business metrics 
653 |a Adaptive algorithms 
653 |a Priority scheduling 
700 1 |a Said Ben Alla  |u LAVETE Laboratory, Mathematics and Computer Science Department, Science and Technical Faculty, Hassan 1 University, Settat 26000, Morocco; <email>said.benalla@uhp.ac.ma</email> (S.B.A.); <email>abdellah.ezzati@uhp.ac.ma</email> (A.E.) 
700 1 |a Ezzati, Abdellah  |u LAVETE Laboratory, Mathematics and Computer Science Department, Science and Technical Faculty, Hassan 1 University, Settat 26000, Morocco; <email>said.benalla@uhp.ac.ma</email> (S.B.A.); <email>abdellah.ezzati@uhp.ac.ma</email> (A.E.) 
700 1 |a Touhafi, Abdellah  |u Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; <email>abdellah.touhafi@vub.ac.be</email> 
773 0 |t Computers  |g vol. 14, no. 3 (2025), p. 81 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181425362/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181425362/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181425362/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch