MultiGLICE: Combining Graph Neural Networks and Program Slicing for Multiclass Software Vulnerability Detection

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Computers vol. 14, no. 3 (2025), p. 98
Päätekijä: de Kraker, Wesley
Muut tekijät: Vranken, Harald, Hommersom, Arjen
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3181425410
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14030098  |2 doi 
035 |a 3181425410 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a de Kraker, Wesley  |u Department of Computer Science, Open Universiteit, 6419 AT Heerlen, The Netherlands 
245 1 |a MultiGLICE: Combining Graph Neural Networks and Program Slicing for Multiclass Software Vulnerability Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents MultiGLICE (Multi class Graph Neural Network with Program Slice), a model for static code analysis to detect security vulnerabilities. MultiGLICE extends our previous GLICE model with multiclass detection for a large number of vulnerabilities across multiple programming languages. It builds upon the earlier SySeVR and FUNDED models and uniquely integrates inter-procedural program slicing with a graph neural network. Users can configure the depth of the inter-procedural analysis, which allows a trade-off between the detection performance and computational efficiency. Increasing the depth of the inter-procedural analysis improves the detection performance, at the cost of computational efficiency. We conduct experiments with MultiGLICE for the multiclass detection of 38 different CWE types in C/C++, C#, Java, and PHP code. We evaluate the trade-offs in the depth of the inter-procedural analysis and compare its vulnerability detection performance and resource usage with those of prior models. Our experimental results show that MultiGLICE improves the weighted F1-score by about 23% when compared to the FUNDED model adapted for multiclass classification. Furthermore, MultiGLICE offers a significant improvement in computational efficiency. The time required to train the MultiGLICE model is approximately 17 times less than that of FUNDED. 
653 |a Deep learning 
653 |a Datasets 
653 |a Static code analysis 
653 |a Artificial intelligence 
653 |a C plus plus 
653 |a Open source software 
653 |a Graph neural networks 
653 |a Programming languages 
653 |a Neural networks 
653 |a Tradeoffs 
653 |a Computational efficiency 
653 |a Software reliability 
653 |a Automation 
653 |a Semantics 
700 1 |a Vranken, Harald  |u Department of Computer Science, Open Universiteit, 6419 AT Heerlen, The Netherlands; Institute for Computing and Information Sciences, Radboud University, 6525 EC Nijmegen, The Netherlands 
700 1 |a Hommersom, Arjen  |u Department of Computer Science, Open Universiteit, 6419 AT Heerlen, The Netherlands; Institute for Computing and Information Sciences, Radboud University, 6525 EC Nijmegen, The Netherlands 
773 0 |t Computers  |g vol. 14, no. 3 (2025), p. 98 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181425410/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181425410/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181425410/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch