Federated Learning System for Dynamic Radio/MEC Resource Allocation and Slicing Control in Open Radio Access Network

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Future Internet vol. 17, no. 3 (2025), p. 106
Päätekijä: Martínez-Morfa, Mario
Muut tekijät: Ruiz de Mendoza, Carlos, Cervelló-Pastor, Cristina, Sallent-Ribes, Sebastia
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3181454253
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17030106  |2 doi 
035 |a 3181454253 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Martínez-Morfa, Mario 
245 1 |a Federated Learning System for Dynamic Radio/MEC Resource Allocation and Slicing Control in Open Radio Access Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The evolution of cellular networks from fifth-generation (5G) architectures to beyond 5G (B5G) and sixth-generation (6G) systems necessitates innovative solutions to overcome the limitations of traditional Radio Access Network (RAN) infrastructures. Existing monolithic and proprietary RAN components restrict adaptability, interoperability, and optimal resource utilization, posing challenges in meeting the stringent requirements of next-generation applications. The Open Radio Access Network (O-RAN) and Multi-Access Edge Computing (MEC) have emerged as transformative paradigms, enabling disaggregation, virtualization, and real-time adaptability—which are key to achieving ultra-low latency, enhanced bandwidth efficiency, and intelligent resource management in future cellular systems. This paper presents a Federated Deep Reinforcement Learning (FDRL) framework for dynamic radio and edge computing resource allocation and slicing management in O-RAN environments. An Integer Linear Programming (ILP) model has also been developed, resulting in the proposed FDRL solution drastically reducing the system response time. On the other hand, unlike centralized Reinforcement Learning (RL) approaches, the proposed FDRL solution leverages Federated Learning (FL) to optimize performance while preserving data privacy and reducing communication overhead. Comparative evaluations against centralized models demonstrate that the federated approach improves learning efficiency and reduces bandwidth consumption. The system has been rigorously tested across multiple scenarios, including multi-client O-RAN environments and loss-of-synchronization conditions, confirming its resilience in distributed deployments. Additionally, a case study simulating realistic traffic profiles validates the proposed framework’s ability to dynamically manage radio and computational resources, ensuring efficient and adaptive O-RAN slicing for diverse and high-mobility scenarios. 
653 |a Linear programming 
653 |a Deep learning 
653 |a Collaboration 
653 |a Adaptability 
653 |a Integer programming 
653 |a 5G mobile communication 
653 |a Bandwidths 
653 |a Edge computing 
653 |a Resource allocation 
653 |a Mobile computing 
653 |a Synchronism 
653 |a Automation 
653 |a Privacy 
653 |a Resource management 
653 |a Performance evaluation 
653 |a Cellular communication 
653 |a Efficiency 
653 |a Case studies 
653 |a Optimization 
653 |a Flexibility 
653 |a Network latency 
653 |a Quality of service 
653 |a Resource utilization 
653 |a Portable computers 
653 |a Real time 
653 |a Federated learning 
700 1 |a Ruiz de Mendoza, Carlos 
700 1 |a Cervelló-Pastor, Cristina 
700 1 |a Sallent-Ribes, Sebastia 
773 0 |t Future Internet  |g vol. 17, no. 3 (2025), p. 106 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181454253/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181454253/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181454253/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch