Accelerometer Bias Estimation for Unmanned Aerial Vehicles Using Extended Kalman Filter-Based Vision-Aided Navigation

Збережено в:
Бібліографічні деталі
Опубліковано в::Electronics vol. 14, no. 6 (2025), p. 1074
Автор: Belfadel, Djedjiga
Інші автори: Haessig, David
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3181454507
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14061074  |2 doi 
035 |a 3181454507 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Belfadel, Djedjiga  |u Electrical Engineering, Fairfield University, Fairfield, CT 06824, USA 
245 1 |a Accelerometer Bias Estimation for Unmanned Aerial Vehicles Using Extended Kalman Filter-Based Vision-Aided Navigation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate estimation of accelerometer biases in Inertial Measurement Units (IMUs) is crucial for reliable Unmanned Aerial Vehicle (UAV) navigation, particularly in GPS-denied environments. Uncompensated biases lead to an unbounded accumulation of position error and increased velocity error, resulting in significant navigation inaccuracies. This paper examines the effects of accelerometer bias on UAV navigation accuracy and introduces a vision-aided navigation system. The proposed system integrates data from an IMU, altimeter, and optical flow sensor (OFS), employing an Extended Kalman Filter (EKF) to estimate both the accelerometer biases and the UAV position and velocity. This approach reduces the accumulation of velocity and positional errors. The efficiency of this approach was validated through simulation experiments involving a UAV navigating in circular and straight-line trajectories. Simulation results show that the proposed approach significantly enhances UAV navigation performance, providing more accurate estimates of both the state and accelerometer biases while reducing error growth through the use of vision aiding from an Optical Flow Sensor. 
653 |a Velocity errors 
653 |a Navigation systems 
653 |a Velocity 
653 |a Accuracy 
653 |a Bias 
653 |a Coordinate transformations 
653 |a Satellite navigation systems 
653 |a Optical flow (image analysis) 
653 |a Unmanned aerial vehicles 
653 |a Sensors 
653 |a Accumulation 
653 |a Error reduction 
653 |a Inertial platforms 
653 |a Accelerometers 
653 |a Localization 
653 |a Performance evaluation 
653 |a Attitudes 
653 |a Extended Kalman filter 
653 |a Position errors 
700 1 |a Haessig, David  |u AuresTech Inc., Bridgewater, NJ 08807, USA; <email>dave@aurestech.com</email> 
773 0 |t Electronics  |g vol. 14, no. 6 (2025), p. 1074 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181454507/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181454507/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181454507/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch