Hybrid Control Strategy for DC Microgrid Against False Data Injection Attacks and Sensor Faults Based on Lagrange Extrapolation and Voltage Observer

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 6 (2025), p. 1087
Autor principal: Seong-Bae, Jo
Otros Autores: Dat Thanh Tran, Nguyen, Hieu Xuan, Kim, Myungbok, Kim, Kyeong-Hwa
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3181456112
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14061087  |2 doi 
035 |a 3181456112 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Seong-Bae, Jo  |u Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; <email>sb1680@seoultech.ac.kr</email> (S.-B.J.); <email>ttd_950615@seoultech.ac.kr</email> (D.T.T.); <email>24510198@seoultech.ac.kr</email> (H.X.N.) 
245 1 |a Hybrid Control Strategy for DC Microgrid Against False Data Injection Attacks and Sensor Faults Based on Lagrange Extrapolation and Voltage Observer 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this study, to enhance the system reliability under false data injection (FDI) attacks and DC-link voltage (DCLV) sensor failures, a hybrid control strategy for a DC microgrid (DCMG) based on the Lagrange extrapolation and voltage observer is proposed. Under normal conditions without FDI attacks or DCLV sensor failures, the DCMG system works in a distributed control scheme. To enhance the reliability of the system under the DCLV sensor failure or FDI attack, the DCMG system utilizes a hybrid control strategy that combines distributed control with decentralized control. The hybrid control strategy is achieved by the proposed detection algorithms for FDI attacks and DCLV sensor failures. The detection of FDI attacks is accomplished by comparing the predicted secondary controller output based on the Lagrange extrapolation with the actual one. When a power agent detects an FDI attack, its control mode is switched to decentralized control by using the proposed hybrid control strategy. The DCLV sensor failure detection algorithm to enhance system reliability against DCLV sensor failures is achieved by comparing the estimated DCLV with the measured one from the voltage observer. Upon detecting a DCLV sensor failure, the operation of the power agent is switched to the current control mode to sustain the system operation even under DCLV sensor failures. The proposed detection algorithms are simple, effective, and precise, operating without mutual interference that deteriorates the detection accuracy. Simulation and experiments are carried out under various uncertain test conditions to validate the reliability and effectiveness of the proposed control strategy. 
653 |a Decentralized control 
653 |a Accuracy 
653 |a Failure 
653 |a System reliability 
653 |a Distributed generation 
653 |a Electric potential 
653 |a Communication 
653 |a Voltage 
653 |a Failure detection 
653 |a Sensors 
653 |a Renewable resources 
653 |a Effectiveness 
653 |a Predictive control 
653 |a Algorithms 
653 |a Control systems 
653 |a Extrapolation 
653 |a Systems stability 
653 |a Alternative energy sources 
653 |a Hybrid control 
653 |a Energy consumption 
700 1 |a Dat Thanh Tran  |u Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; <email>sb1680@seoultech.ac.kr</email> (S.-B.J.); <email>ttd_950615@seoultech.ac.kr</email> (D.T.T.); <email>24510198@seoultech.ac.kr</email> (H.X.N.) 
700 1 |a Nguyen, Hieu Xuan  |u Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; <email>sb1680@seoultech.ac.kr</email> (S.-B.J.); <email>ttd_950615@seoultech.ac.kr</email> (D.T.T.); <email>24510198@seoultech.ac.kr</email> (H.X.N.) 
700 1 |a Kim, Myungbok  |u Purpose Built Mobility Group, Korea Institute of Industrial Technology, 6 Choemdan-gwagiro 208-gil, Buk-gu, Gwangju 61012, Republic of Korea; <email>boks@kitech.re.kr</email> 
700 1 |a Kim, Kyeong-Hwa  |u Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; <email>sb1680@seoultech.ac.kr</email> (S.-B.J.); <email>ttd_950615@seoultech.ac.kr</email> (D.T.T.); <email>24510198@seoultech.ac.kr</email> (H.X.N.) 
773 0 |t Electronics  |g vol. 14, no. 6 (2025), p. 1087 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181456112/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181456112/fulltextwithgraphics/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181456112/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch