An Optimized Hybrid Approach to Denoising of EEG Signals Using CNN and LMS Filtering

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics vol. 14, no. 6 (2025), p. 1193
Hlavní autor: Nair, Suma
Další autoři: Britto, Pari James, Man-Fai Leung
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3181457743
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14061193  |2 doi 
035 |a 3181457743 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Nair, Suma  |u Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India; <email>brittopariece@veltech.edu.in</email> 
245 1 |a An Optimized Hybrid Approach to Denoising of EEG Signals Using CNN and LMS Filtering 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Sleep is a physiological signal which plays a vital role in maintaining human health and well-being. Polysomnographic records provide insights into the various changes occurring during sleep, and hence its study is important in diagnosing various disorders including sleep disorders. As polysomnographic records encapsulate several biological signals, an extraction of EEG signals requires efficient denoising. Thus, a reliable tool for artifact removal is essential in the field of biomedical applications. The CNN is used for its feature extraction and robustness and the least mean square filter for its noise suppression. As the techniques complement one another, a combination of both leads to a better denoised EEG signal. In this approach, CNN is used for the precise removal of artifacts and then an LMS filter is used for its effective adaptation in real-time. The hybridization of both techniques in a hardware-based environment is largely. unexplored. As a result, this study proposes an integration of convolutional neural networks and least mean square filtering for an efficient denoising of EEG signals. Both techniques are optimized to tailor the design to hardware requirements. CNN is refined using the Strassen–Winograd algorithm. The Strassen–Winograd algorithm simplifies matrix multiplication, contributing to a more hardware-optimized design. In this study LMS filtering is analyzed and optimized using several optimizations. The optimizations are two’s complement distributed arithmetic algorithm, offset binary coding-based distributed arithmetic, offset binary coding Radix 4-based distributed arithmetic, as well as a Coordinate Rotation Digital Computer. The CNN with offset binary radix 4 distributed arithmetic-based LMS filter has resulted in a decrease in area of 77% and a decrease in power by 69.1%. But, in terms of Signal to Noise Ratio, Mean Squared Error and Correlation Coefficient, the CNN with offset binary coding distributed arithmetic-based LMS filter has shown better performance. The design was synthesized and implemented in Vivado 19.1. The power and area reduction in this study makes it even more suitable for wearable devices. 
653 |a Physiology 
653 |a Artifacts 
653 |a Wavelet transforms 
653 |a Arithmetic 
653 |a Hardware 
653 |a Binary codes 
653 |a Biomedical materials 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Noise reduction 
653 |a Neural networks 
653 |a Multiplication & division 
653 |a Wearable technology 
653 |a Multiplication 
653 |a Algorithms 
653 |a Electroencephalography 
653 |a Arithmetic coding 
653 |a Digital computers 
653 |a Real time 
653 |a Filtration 
653 |a Correlation coefficients 
653 |a Signal to noise ratio 
700 1 |a Britto, Pari James  |u Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India; <email>brittopariece@veltech.edu.in</email> 
700 1 |a Man-Fai Leung  |u School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB11PT, UK; <email>man-fai.leung@aru.ac.uk</email> 
773 0 |t Electronics  |g vol. 14, no. 6 (2025), p. 1193 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181457743/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181457743/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181457743/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch