A Novel Fault Diagnosis and Accurate Localization Method for a Power System Based on GraphSAGE Algorithm

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Electronics vol. 14, no. 6 (2025), p. 1219
Kaituhi matua: Wang, Fang
Ētahi atu kaituhi: Hu, Zhijian
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3181457996
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14061219  |2 doi 
035 |a 3181457996 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Wang, Fang 
245 1 |a A Novel Fault Diagnosis and Accurate Localization Method for a Power System Based on GraphSAGE Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Artificial intelligence (AI)-based fault diagnosis methods have been widely studied for power grids, with most research focusing on fault interval localization rather than precise fault point identification. In cases involving long-distance transmission lines or underground cables, merely locating the fault interval is insufficient. This paper presents a novel fault diagnosis and precise localization method for power systems utilizing the Graph Sample and Aggregated (GraphSAGE) algorithm. A fault diagnosis and interval localization model are developed based on the system topology, identifying k-order adjacent nodes at both ends of the fault interval. This information is then used to construct an accurate fault point localization model. Leveraging the strong inductive learning capability of GraphSAGE, the proposed method effectively captures the impact of the fault point on surrounding nodes, enabling precise fault point localization. Experimental results demonstrate that the proposed method offers high fault diagnosis accuracy, precise localization, and robust performance. The model shows significant applicability in real-world fault scenarios, maintaining strong performance and economic value across varying network topologies and incomplete data collection. 
653 |a Localization method 
653 |a Accuracy 
653 |a Deep learning 
653 |a Fault diagnosis 
653 |a Fourier transforms 
653 |a Trends 
653 |a Underground transmission lines 
653 |a Transmission lines 
653 |a Neural networks 
653 |a Underground cables 
653 |a Classification 
653 |a Nodes 
653 |a Smart grid technology 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Localization 
653 |a Eigenvectors 
653 |a Network topologies 
653 |a Efficiency 
653 |a Electric power systems 
700 1 |a Hu, Zhijian 
773 0 |t Electronics  |g vol. 14, no. 6 (2025), p. 1219 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181457996/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181457996/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181457996/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch