MARC

LEADER 00000nab a2200000uu 4500
001 3181476731
003 UK-CbPIL
022 |a 1753-318X 
024 7 |a 10.1111/jfr3.70026  |2 doi 
035 |a 3181476731 
045 0 |b d20250301 
084 |a 164133  |2 nlm 
100 1 |a Ikeuchi, Koji  |u Foundation of River & Basin Integrated Communications, Tokyo, Japan 
245 1 |a Development of Flash Flood Forecasting System for Small and Medium‐Sized Rivers 
260 |b John Wiley & Sons, Inc.  |c Mar 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT Owing to the increased frequency of short‐duration extreme rainfall events caused by climate change, peak flood flows are expected to increase substantially in small and medium‐sized rivers (SMRs) with a short time of concentration for a catchment (Tc). Accurate flood forecasts and corresponding evacuation are effective in reducing the number of casualties caused by flash floods in SMRs. Currently, flood forecasting using observed rainfall in SMRs has a short lead time, which often delays the issuance of evacuation orders by local governments. Moreover, the large number of SMRs necessitates a system that can be widely used by local governments for disaster response tasks, such as issuing evacuation orders. Therefore, we developed a system that can accurately predict when river water levels will reach the Flood Risk Level (FRL). This forecasting approach uses the rainfall–runoff–inundation (RRI) model and the H–Q equation. The parameters in the RRI model were optimized using the Shuffled Complex Evolution algorithm developed at the University of Arizona (SCE‐UA) to reduce the required time and effort. The system uses real‐time water level observation data to sequentially modify the basin state quantities in the RRI model using the particle filter method to improve the water level forecast accuracy. The system was implemented in 200 rivers in Japan with diverse rainfall and geological characteristics and was tested during the flood season. Accuracy verification was conducted when the forecasted water levels were operated within a range of ± 50 cm. The results showed that 75% of the flood events could be forecasted more than 2 h before reaching the FRLs. Furthermore, 89% of the flood events could be predicted with a lead time (LT; time that water levels reach the FRL—time of first forecast) of 2 h or more or a lead time equal to the Tc or more. These findings show that this system has the potential to enhance and strengthen flood warning and evacuation systems. 
651 4 |a Japan 
653 |a Extreme weather 
653 |a Flash floods 
653 |a Flood forecasting 
653 |a Rainfall-runoff modeling 
653 |a Rainfall-climatic change relationships 
653 |a Topography 
653 |a Evacuation systems 
653 |a Rivers 
653 |a Water levels 
653 |a Flood risk 
653 |a Moisture content 
653 |a Climate change 
653 |a Rainfall-runoff relationships 
653 |a Peak floods 
653 |a Accuracy 
653 |a Local government 
653 |a Evacuation 
653 |a Flood predictions 
653 |a Casualties 
653 |a Forecasting 
653 |a Forecast accuracy 
653 |a Floods 
653 |a Disaster management 
653 |a Flash flooding 
653 |a Hydrology 
653 |a Environmental risk 
653 |a Flooding 
653 |a Flood warnings 
653 |a Evolutionary algorithms 
653 |a Risk levels 
653 |a River water 
653 |a Concentration time 
653 |a Lead time 
653 |a Precipitation 
653 |a Runoff 
653 |a Flood flow 
653 |a Storm damage 
653 |a Rain 
653 |a Rainfall 
653 |a Watersheds 
653 |a Environmental 
700 1 |a Kakinuma, Daiki  |u International Centre for Water Hazard and Risk Management Under the Auspices of UNESCO, Public Works Research Institute, Tsukuba, Japan 
700 1 |a Nakamura, Yosuke  |u Mitsui Consultants Co. Ltd., Tokyo, Japan 
700 1 |a Numata, Shingo  |u Mitsui Consultants Co. Ltd., Tokyo, Japan 
700 1 |a Mochizuki, Takafumi  |u Ministry of Land, Infrastructure, Transport and Tourism, Tokyo, Japan 
700 1 |a Kubota, Keijiro  |u International Centre for Water Hazard and Risk Management Under the Auspices of UNESCO, Public Works Research Institute, Tsukuba, Japan 
700 1 |a Yasukawa, Masaki  |u Global Environment Data Commons, The University of Tokyo, Tokyo, Japan 
700 1 |a Nemoto, Toshihiro  |u Global Environment Data Commons, The University of Tokyo, Tokyo, Japan 
700 1 |a Koike, Toshio  |u The University of Tokyo, Tokyo, Japan 
773 0 |t Journal of Flood Risk Management  |g vol. 18, no. 1 (Mar 1, 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181476731/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3181476731/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181476731/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch