Advancing flood susceptibility prediction: A comparative assessment and scalability analysis of machine learning algorithms via artificial intelligence in high‐risk regions of Pakistan

Zapisane w:
Opis bibliograficzny
Wydane w:Journal of Flood Risk Management vol. 18, no. 1 (Mar 1, 2025)
1. autor: Waleed, Mirza
Kolejni autorzy: Sajjad, Muhammad
Wydane:
John Wiley & Sons, Inc.
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3181476822
003 UK-CbPIL
022 |a 1753-318X 
024 7 |a 10.1111/jfr3.13047  |2 doi 
035 |a 3181476822 
045 0 |b d20250301 
084 |a 164133  |2 nlm 
100 1 |a Waleed, Mirza  |u Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 
245 1 |a Advancing flood susceptibility prediction: A comparative assessment and scalability analysis of machine learning algorithms via artificial intelligence in high‐risk regions of Pakistan 
260 |b John Wiley & Sons, Inc.  |c Mar 1, 2025 
513 |a Journal Article 
520 3 |a Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood‐prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high‐risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood‐prone regions and highlights that LGBM is superior for accuracy‐focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision‐making and informed policy production for flood risk management. 
651 4 |a Pakistan 
653 |a Population 
653 |a Accuracy 
653 |a Risk management 
653 |a Artificial intelligence 
653 |a Flood management 
653 |a Performance evaluation 
653 |a Floods 
653 |a Flood mapping 
653 |a Hydrology 
653 |a Environmental risk 
653 |a Computer applications 
653 |a Machine learning 
653 |a Developing countries--LDCs 
653 |a Flood risk 
653 |a Explainable artificial intelligence 
653 |a Climate change 
653 |a Learning algorithms 
653 |a Decision trees 
653 |a Geography 
653 |a Precipitation 
653 |a Emergency preparedness 
653 |a Wind 
653 |a Predictions 
653 |a Algorithms 
653 |a Land use 
653 |a Decision making 
653 |a Comparative analysis 
653 |a Flood predictions 
653 |a Environmental 
700 1 |a Sajjad, Muhammad  |u Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 
773 0 |t Journal of Flood Risk Management  |g vol. 18, no. 1 (Mar 1, 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181476822/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3181476822/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181476822/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch