A Progressive Clustering Approach for Buildings Using MST and SOM with Feature Factors

Guardado en:
Detalles Bibliográficos
Publicado en:ISPRS International Journal of Geo-Information vol. 14, no. 3 (2025), p. 103
Autor principal: Zhang, Tianliang
Otros Autores: Lan, Xiaoji, Feng, Jianhua
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3181481537
003 UK-CbPIL
022 |a 2220-9964 
024 7 |a 10.3390/ijgi14030103  |2 doi 
035 |a 3181481537 
045 2 |b d20250101  |b d20251231 
084 |a 231472  |2 nlm 
100 1 |a Zhang, Tianliang 
245 1 |a A Progressive Clustering Approach for Buildings Using MST and SOM with Feature Factors 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the challenges in current research on spatial clustering algorithms for buildings in topographic maps—namely, their limited ability to effectively accommodate diverse application scenarios, including dense and regular urban environments, sparsely and irregularly distributed rural areas, and urban villages with complex structures—this paper introduces an innovative progressive clustering algorithm framework. The proposed framework operates in a hierarchical manner, progressing from macro to micro levels, thereby enhancing its adaptability and practical versatility. Specifically, it employs the minimum spanning tree (MST) technique for macro-level clustering analysis. Subsequently, a self-organizing map (SOM) neural network is utilized to perform micro-level clustering, enabling a more refined and detailed classification. Within this framework, the minimum spanning tree effectively captures the macroscopic distribution patterns of the building population. The macroscopic clustering results are then utilized as the initial weight configurations for the SOM neural network. This approach ensures that the overall spatial structural integrity is preserved during the subsequent micro-level clustering process. Moreover, the SOM neural network achieves refined optimization of micro-clustering details by incorporating building feature factors. To validate the effectiveness of the proposed algorithm, this study conducts an empirical analysis and comparative testing using building data from Futian District, Shenzhen City. The results indicate that the proposed algorithm exhibits superior recognition capabilities when applied to complex and variable spatial distribution patterns of buildings. Furthermore, the clustering outcomes align closely with the principles of Gestalt visual perception and outperform the comparison algorithms in overall performance. 
653 |a Visual perception 
653 |a Urban environments 
653 |a Datasets 
653 |a Adaptability 
653 |a Urban planning 
653 |a Algorithms 
653 |a Buildings 
653 |a Topographic maps 
653 |a Spatial distribution 
653 |a Empirical analysis 
653 |a Clustering 
653 |a Visual perception driven algorithms 
653 |a Cluster analysis 
653 |a Neural networks 
653 |a Rural areas 
653 |a Structural integrity 
653 |a Graph theory 
653 |a Self organizing maps 
653 |a Urban areas 
653 |a Distribution patterns 
653 |a Topographic mapping 
700 1 |a Lan, Xiaoji 
700 1 |a Feng, Jianhua 
773 0 |t ISPRS International Journal of Geo-Information  |g vol. 14, no. 3 (2025), p. 103 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181481537/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181481537/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181481537/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch