Deep Q-Learning Based Adaptive MAC Protocol with Collision Avoidance and Efficient Power Control for UWSNs

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Marine Science and Engineering vol. 13, no. 3 (2025), p. 616
Autor principal: Wazir Ur Rahman
Altres autors: Qiao Gang, Zhou, Feng, Tahir, Muhammad, Wasiq Ali, Muhammad Adil, Muhammad Ilyas Khattak
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3181550751
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13030616  |2 doi 
035 |a 3181550751 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Wazir Ur Rahman  |u National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China; <email>wazirrahman@hrbeu.edu.cn</email> (W.U.R.); <email>qiaogang@hrbeu.edu.cn</email> (Q.G.); <email>wasiqali@hrbeu.edu.cn</email> (W.A.); <email>adil@hrbeu.edu.cn</email> (M.A.); Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China; College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China 
245 1 |a Deep Q-Learning Based Adaptive MAC Protocol with Collision Avoidance and Efficient Power Control for UWSNs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Underwater wireless sensor networks (UWSNs) widely used for maritime object detection or for monitoring of oceanic parameters that plays vital role prediction of tsunami to life-cycle of marine species by deploying sensor nodes at random locations. However, the dynamic and unpredictable underwater environment poses significant challenges in communication, including interference, collisions, and energy inefficiency. In changing underwater environment to make routing possible among nodes or/and base station (BS) an adaptive receiver-initiated deep adaptive with power control and collision avoidance MAC (DAWPC-MAC) protocol is proposed to address the challenges of interference, collisions, and energy inefficiency. The proposed framework is based on Deep Q-Learning (DQN) to optimize network performance by enhancing collision avoidance in a varying sensor locations, conserving energy in changing path loss with respect to time and depth and reducing number of relaying nodes to make communication reliable and ensuring synchronization. The dynamic and unpredictable underwater environment, shaped by variations in environmental parameters such as temperature (T) with respect to latitude, longitude, and depth, is carefully considered in the design of the proposed MAC protocol. Sensor nodes are enabled to adaptively schedule wake-up times and efficiently control transmission power to communicate with other sensor nodes and/or courier node plays vital role in routing for data collection and forwarding. DAWPC-MAC ensures energy-efficient and reliable time-sensitive data transmission, improving the packet delivery rati (PDR) by 14%, throughput by over 70%, and utility by more than 60% compared to existing methods like TDTSPC-MAC, DC-MAC, and ALOHA MAC. These enhancements significantly contribute to network longevity and operational efficiency in time-critical underwater applications. 
653 |a Parameters 
653 |a Adaptability 
653 |a Protocol 
653 |a Traffic 
653 |a Communication 
653 |a Power control 
653 |a Collision avoidance 
653 |a Bandwidths 
653 |a Synchronization 
653 |a Energy efficiency 
653 |a Optimization 
653 |a Wireless sensor networks 
653 |a Nodes 
653 |a Synchronism 
653 |a Packet transmission 
653 |a Data transmission 
653 |a Transmitters 
653 |a Energy conservation 
653 |a Energy consumption 
653 |a Data collection 
653 |a Propagation 
653 |a Learning 
653 |a Sensors 
653 |a Neural networks 
653 |a Decision making 
653 |a Energy 
653 |a Design 
653 |a Literature reviews 
653 |a Acoustics 
653 |a Collisions 
653 |a Underwater 
653 |a Resource management 
653 |a Environmental 
700 1 |a Qiao Gang  |u National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China; <email>wazirrahman@hrbeu.edu.cn</email> (W.U.R.); <email>qiaogang@hrbeu.edu.cn</email> (Q.G.); <email>wasiqali@hrbeu.edu.cn</email> (W.A.); <email>adil@hrbeu.edu.cn</email> (M.A.); Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China; College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China 
700 1 |a Zhou, Feng  |u National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China; <email>wazirrahman@hrbeu.edu.cn</email> (W.U.R.); <email>qiaogang@hrbeu.edu.cn</email> (Q.G.); <email>wasiqali@hrbeu.edu.cn</email> (W.A.); <email>adil@hrbeu.edu.cn</email> (M.A.); Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China; College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China 
700 1 |a Tahir, Muhammad  |u Department of Engineering and Computer Science, NUML Faisalabad Campus, Faisalabad 38000, Pakistan; <email>engr.tahir1987@gmail.com</email> 
700 1 |a Wasiq Ali  |u National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China; <email>wazirrahman@hrbeu.edu.cn</email> (W.U.R.); <email>qiaogang@hrbeu.edu.cn</email> (Q.G.); <email>wasiqali@hrbeu.edu.cn</email> (W.A.); <email>adil@hrbeu.edu.cn</email> (M.A.); Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China; College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China 
700 1 |a Muhammad Adil  |u National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China; <email>wazirrahman@hrbeu.edu.cn</email> (W.U.R.); <email>qiaogang@hrbeu.edu.cn</email> (Q.G.); <email>wasiqali@hrbeu.edu.cn</email> (W.A.); <email>adil@hrbeu.edu.cn</email> (M.A.); Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China; College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China 
700 1 |a Muhammad Ilyas Khattak  |u School of Control Science and Engineering, Shandong University, Jinan 250100, China; <email>ilyas@mail.sdu.edu.cn</email> 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 3 (2025), p. 616 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181550751/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181550751/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181550751/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch