Exploring the Intersection of Machine Learning and Big Data: A Survey

Gardado en:
Detalles Bibliográficos
Publicado en:Machine Learning and Knowledge Extraction vol. 7, no. 1 (2025), p. 13
Autor Principal: Dritsas, Elias
Outros autores: Trigka, Maria
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3181640295
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7010013  |2 doi 
035 |a 3181640295 
045 2 |b d20250101  |b d20250331 
100 1 |a Dritsas, Elias 
245 1 |a Exploring the Intersection of Machine Learning and Big Data: A Survey 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The integration of machine learning (ML) with big data has revolutionized industries by enabling the extraction of valuable insights from vast and complex datasets. This convergence has fueled advancements in various fields, leading to the development of sophisticated models capable of addressing complicated problems. However, the application of ML in big data environments presents significant challenges, including issues related to scalability, data quality, model interpretability, privacy, and the handling of diverse and high-velocity data. This survey provides a comprehensive overview of the current state of ML applications in big data, systematically identifying the key challenges and recent advancements in the field. By critically analyzing existing methodologies, this paper highlights the gaps in current research and proposes future directions for the development of scalable, interpretable, and privacy-preserving ML techniques. Additionally, this survey addresses the ethical and societal implications of ML in big data, emphasizing the need for responsible and equitable approaches to harnessing these technologies. The insights presented in this paper aim to guide future research and contribute to the ongoing discourse on the responsible integration of ML and big data. 
653 |a Big Data 
653 |a Machine learning 
653 |a Electronic health records 
653 |a Predictive analytics 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Fraud prevention 
653 |a Decision making 
653 |a Privacy 
653 |a Social networks 
653 |a Environmental impact 
653 |a Algorithms 
653 |a Ethics 
653 |a Financial institutions 
653 |a Clinical outcomes 
700 1 |a Trigka, Maria 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 1 (2025), p. 13 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181640295/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181640295/fulltextwithgraphics/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181640295/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch