Unlocking the Potential of Na2Ti3O7-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nanomaterials vol. 15, no. 6 (2025), p. 423
Hlavní autor: Yong-Gang, Sun
Další autoři: Hu, Yu, Li, Dong, Ting-Ting, Zhou, Xiang-Yu, Qian, Fa-Jia Zhang, Jia-Qi, Shen, Zhi-Yang, Shan, Li-Ping, Yang, Xi-Jie, Lin
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3181645482
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15060423  |2 doi 
035 |a 3181645482 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Yong-Gang, Sun  |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); 
245 1 |a Unlocking the Potential of Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Layered sodium trititanate (Na2Ti3O7) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na+ diffusion kinetics, poor electron conductivity, and instability during cycling pose significant challenges for practical applications. To address these issues, we developed a template-free method to synthesize Na2Ti3O7-C hollow microspheres. The synthesis began with polymerization-induced colloid aggregation to form a TiO2–urea–formaldehyde (TiO2-UF) precursor, which was then subjected to heat treatment to induce inward crystallization, creating hollow cavities within the microspheres. The hollow structure, combined with a conductive carbon matrix, significantly enhanced the cycling performance and rate capability of the material. When used as an anode, the Na2Ti3O7-C hollow microspheres exhibited a high reversible capacity of 188 mAh g−1 at 0.2C and retained 169 mAh g−1 after 500 cycles. Additionally, the material demonstrated excellent rate performance with capacities of 157, 133, 105, 77, 62, and 45 mAh g−1 at current densities of 0.5, 1, 2, 5, 10, and 20C, respectively. This innovative approach provides a new strategy for developing high-performance sodium-ion battery anodes and has the potential to significantly advance the field of energy storage. 
651 4 |a Japan 
653 |a Microspheres 
653 |a Air flow 
653 |a Electrons 
653 |a Electron conductivity 
653 |a Chemical synthesis 
653 |a Electrode materials 
653 |a Batteries 
653 |a Crystallization 
653 |a Energy storage 
653 |a Polymerization 
653 |a Heat treatment 
653 |a Anodes 
653 |a Sodium 
653 |a Caustic soda 
653 |a Cost effectiveness 
653 |a Aldehydes 
653 |a Heat treatments 
653 |a Spectrum analysis 
653 |a Titanium dioxide 
653 |a Carbon 
653 |a Plateaus 
653 |a Sodium titanate 
653 |a Hydrochloric acid 
653 |a Cycles 
653 |a Sodium-ion batteries 
653 |a Microscopy 
653 |a Diffusion rate 
653 |a Morphology 
700 1 |a Hu, Yu  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Li, Dong  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Ting-Ting, Zhou  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Xiang-Yu, Qian  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Fa-Jia Zhang  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Jia-Qi, Shen  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Zhi-Yang, Shan  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); 
700 1 |a Li-Ping, Yang  |u School of Chemistry &amp; Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; &lt;email&gt;sunyg86@iccas.ac.cn&lt;/email&gt; (Y.-G.S.); &lt;email&gt;huyu@stu.ycit.edu.cn&lt;/email&gt; (Y.H.); ; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China 
700 1 |a Xi-Jie, Lin  |u School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China 
773 0 |t Nanomaterials  |g vol. 15, no. 6 (2025), p. 423 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181645482/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181645482/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181645482/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch