Unlocking the Potential of Na2Ti3O7-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis
Uloženo v:
| Vydáno v: | Nanomaterials vol. 15, no. 6 (2025), p. 423 |
|---|---|
| Hlavní autor: | |
| Další autoři: | , , , , , , , , |
| Vydáno: |
MDPI AG
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3181645482 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2079-4991 | ||
| 024 | 7 | |a 10.3390/nano15060423 |2 doi | |
| 035 | |a 3181645482 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231543 |2 nlm | ||
| 100 | 1 | |a Yong-Gang, Sun |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 245 | 1 | |a Unlocking the Potential of Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Layered sodium trititanate (Na2Ti3O7) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na+ diffusion kinetics, poor electron conductivity, and instability during cycling pose significant challenges for practical applications. To address these issues, we developed a template-free method to synthesize Na2Ti3O7-C hollow microspheres. The synthesis began with polymerization-induced colloid aggregation to form a TiO2–urea–formaldehyde (TiO2-UF) precursor, which was then subjected to heat treatment to induce inward crystallization, creating hollow cavities within the microspheres. The hollow structure, combined with a conductive carbon matrix, significantly enhanced the cycling performance and rate capability of the material. When used as an anode, the Na2Ti3O7-C hollow microspheres exhibited a high reversible capacity of 188 mAh g−1 at 0.2C and retained 169 mAh g−1 after 500 cycles. Additionally, the material demonstrated excellent rate performance with capacities of 157, 133, 105, 77, 62, and 45 mAh g−1 at current densities of 0.5, 1, 2, 5, 10, and 20C, respectively. This innovative approach provides a new strategy for developing high-performance sodium-ion battery anodes and has the potential to significantly advance the field of energy storage. | |
| 651 | 4 | |a Japan | |
| 653 | |a Microspheres | ||
| 653 | |a Air flow | ||
| 653 | |a Electrons | ||
| 653 | |a Electron conductivity | ||
| 653 | |a Chemical synthesis | ||
| 653 | |a Electrode materials | ||
| 653 | |a Batteries | ||
| 653 | |a Crystallization | ||
| 653 | |a Energy storage | ||
| 653 | |a Polymerization | ||
| 653 | |a Heat treatment | ||
| 653 | |a Anodes | ||
| 653 | |a Sodium | ||
| 653 | |a Caustic soda | ||
| 653 | |a Cost effectiveness | ||
| 653 | |a Aldehydes | ||
| 653 | |a Heat treatments | ||
| 653 | |a Spectrum analysis | ||
| 653 | |a Titanium dioxide | ||
| 653 | |a Carbon | ||
| 653 | |a Plateaus | ||
| 653 | |a Sodium titanate | ||
| 653 | |a Hydrochloric acid | ||
| 653 | |a Cycles | ||
| 653 | |a Sodium-ion batteries | ||
| 653 | |a Microscopy | ||
| 653 | |a Diffusion rate | ||
| 653 | |a Morphology | ||
| 700 | 1 | |a Hu, Yu |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Li, Dong |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Ting-Ting, Zhou |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Xiang-Yu, Qian |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Fa-Jia Zhang |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Jia-Qi, Shen |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Zhi-Yang, Shan |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); | |
| 700 | 1 | |a Li-Ping, Yang |u School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; <email>sunyg86@iccas.ac.cn</email> (Y.-G.S.); <email>huyu@stu.ycit.edu.cn</email> (Y.H.); ; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China | |
| 700 | 1 | |a Xi-Jie, Lin |u School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China | |
| 773 | 0 | |t Nanomaterials |g vol. 15, no. 6 (2025), p. 423 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3181645482/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3181645482/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3181645482/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |