Using Digital Tools to Understand Global Development Continuums

Guardado en:
Detalles Bibliográficos
Publicado en:Societies vol. 15, no. 3 (2025), p. 65
Autor principal: de Curtò, J
Otros Autores: de Zarzà, I
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Traditional classifications of global development, such as the developed/developing dichotomy or Global North/South, often oversimplify the intricate landscape of human development. This paper leverages computational tools, advanced visualization techniques, and mathematical modeling to challenge these conventional categories and reveal a continuous development spectrum among nations. By applying hierarchical clustering, multidimensional scaling, and interactive visualizations to Human Development Index (HDI) data, we identify “development neighborhoods”—clusters of countries that exhibit similar development patterns, sometimes across geographical boundaries. Our methodology combines network theory, statistical physics, and digital humanities approaches to model development as a continuous field, introducing novel metrics for development potential and regional inequality. Through analysis of HDI data from 193 countries (1990–2022), we demonstrate significant regional variations in development trajectories, with Africa showing the highest mean change rate (28.36%) despite maintaining the lowest mean HDI (0.557). The implementation of circle packing and radial dendrogram visualizations reveals both population dynamics and development continuums, while our mathematical framework provides rigorous quantification of development distances and cluster stability. This approach not only uncovers sophisticated developmental progressions but also emphasizes the importance of continuous frameworks over categorical divisions. The findings highlight how digital humanities tools can enhance our understanding of global development, providing policymakers with insights that traditional methods might overlook. Our methodology demonstrates the potential of computational social science to offer more granular analyses of development, supporting policies that recognize the diversity within regional and developmental clusters, while our mathematical framework provides a foundation for future quantitative studies in development economics.
ISSN:2075-4698
DOI:10.3390/soc15030065
Fuente:Social Science Database