VGGNet and Attention Mechanism-Based Image Quality Assessment Algorithm in Symmetry Edge Intelligence Systems

Збережено в:
Бібліографічні деталі
Опубліковано в::Symmetry vol. 17, no. 3 (2025), p. 331
Автор: Shen, Fanfan
Інші автори: Liu, Haipeng, Xu, Chao, Ouyang, Lei, Zhang, Jun, Chen, Yong, He, Yanxiang
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3181699617
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17030331  |2 doi 
035 |a 3181699617 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Shen, Fanfan  |u School of Computer Science, Nanjing Audit University, Nanjing 211815, China; <email>ffshen@nau.edu.cn</email> (F.S.); 
245 1 |a VGGNet and Attention Mechanism-Based Image Quality Assessment Algorithm in Symmetry Edge Intelligence Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of Internet of Things (IoT) technology, the number of devices connected to the network is exploding. How to improve the performance of edge devices has become an important challenge. Research on quality evaluation algorithms for brain tumor images remains scarce within symmetry edge intelligence systems. Additionally, the data volume in brain tumor datasets is frequently inadequate to support the training of neural network models. Most existing non-reference image quality assessment methods are based on natural statistical laws or construct a single-network model without considering visual perception characteristics, resulting in significant differences between the final evaluation results and subjective perception. To address these issues, we propose the AM-VGG-IQA (Attention Module Visual Geometry Group Image Quality Assessment) algorithm and extend the brain tumor MRI dataset. Visual saliency features with attention mechanism modules are integrated into AM-VGG-IQA. The integration of visual saliency features brings the evaluation outcomes of the model more in line with human perception. Meanwhile, the attention mechanism module cuts down on network parameters and expedites the training speed. For the brain tumor MRI dataset, our model achieves 85% accuracy, enabling it to effectively accomplish the task of evaluating brain tumor images in edge intelligence systems. Additionally, we carry out cross-dataset experiments. It is worth noting that, under varying training and testing ratios, the performance of AM-VGG-IQA remains relatively stable, which effectively demonstrates its remarkable robustness for edge applications. 
653 |a Accuracy 
653 |a Datasets 
653 |a Internet of Things 
653 |a Visual perception 
653 |a Brain cancer 
653 |a Salience 
653 |a Disease 
653 |a Brain research 
653 |a Medical imaging 
653 |a Symmetry 
653 |a Brain 
653 |a Modules 
653 |a Workloads 
653 |a Visual perception driven algorithms 
653 |a Medical diagnosis 
653 |a Quality assessment 
653 |a Performance enhancement 
653 |a Tumors 
653 |a Neural networks 
653 |a Magnetic resonance imaging 
653 |a Decision making 
653 |a Intelligence 
653 |a Methods 
653 |a Algorithms 
653 |a Image quality 
653 |a Streaming media 
653 |a Tissues 
700 1 |a Liu, Haipeng  |u School of Computer Science, Nanjing Audit University, Nanjing 211815, China; <email>ffshen@nau.edu.cn</email> (F.S.); 
700 1 |a Xu, Chao  |u School of Computer Science, Nanjing Audit University, Nanjing 211815, China; <email>ffshen@nau.edu.cn</email> (F.S.); 
700 1 |a Ouyang, Lei  |u North Information Control Research Academy Group Company Limited, Nanjing 221000, China 
700 1 |a Zhang, Jun  |u College of Software, East China University of Science and Technology, Nanchang 330013, China 
700 1 |a Chen, Yong  |u School of Computer Science, Nanjing Audit University, Nanjing 211815, China; <email>ffshen@nau.edu.cn</email> (F.S.); 
700 1 |a He, Yanxiang  |u School of Computer Science, Wuhan University, Wuhan 430072, China 
773 0 |t Symmetry  |g vol. 17, no. 3 (2025), p. 331 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181699617/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181699617/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181699617/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch