Improved Estimator Using Auxiliary Information in Adaptive Cluster Sampling with Networks Selected Without Replacement

Gardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 3 (2025), p. 375
Autor Principal: Chutiman, Nipaporn
Outros autores: Nathomthong, Athipakon, Wichitchan, Supawadee, Guayjarernpanishk, Pannarat
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3181701510
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17030375  |2 doi 
035 |a 3181701510 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Chutiman, Nipaporn  |u Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; <email>67010268001@msu.ac.th</email> (A.N.); <email>supawadee.wi@msu.ac.th</email> (S.W.) 
245 1 |a Improved Estimator Using Auxiliary Information in Adaptive Cluster Sampling with Networks Selected Without Replacement 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Adaptive cluster sampling (ACS) is an efficient sampling technique for studying populations where the characteristic of interest is rare or spatially clustered. This method is widely applied in fields such as ecological studies, epidemiology, and resource management. ACS initially selects sampling units using simple random sampling without replacement. However, in some cases, selected networks may overlap, leading to multiple networks being included in the sample. To address this issue, a modified version of ACS was developed to ensure sampling without replacement at the network level, maintaining sampling symmetry and preventing the inclusion of overlapping networks. Despite this adjustment, asymmetry may still occur when network formation is highly irregular. This issue can be mitigated by incorporating auxiliary variables, which help correct distortions in the sampling process. In many situations, auxiliary variables related to the variable of interest can be utilized to enhance the precision of population parameter estimates. This research proposes multiplicative generalization for an estimator with two auxiliary variables using adaptive cluster sampling with networks selected without replacement. The bias and mean square error (MSE) are derived using a Taylor series expansion to determine the optimal conditions for minimizing MSE. A simulation study is conducted to support the theoretical findings. The results show that the proposed estimator under the optimal values of <inline-formula>T1</inline-formula> and <inline-formula>T2</inline-formula> is the most efficient to minimize MSE. 
653 |a Mean square errors 
653 |a Variables 
653 |a Sample size 
653 |a Network formation 
653 |a Taylor series 
653 |a Series expansion 
653 |a Parameter estimation 
653 |a Clusters 
653 |a Resource management 
653 |a Random sampling 
653 |a Sampling methods 
653 |a Adaptive sampling 
653 |a Efficiency 
700 1 |a Nathomthong, Athipakon  |u Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; &lt;email&gt;67010268001@msu.ac.th&lt;/email&gt; (A.N.); &lt;email&gt;supawadee.wi@msu.ac.th&lt;/email&gt; (S.W.) 
700 1 |a Wichitchan, Supawadee  |u Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; &lt;email&gt;67010268001@msu.ac.th&lt;/email&gt; (A.N.); &lt;email&gt;supawadee.wi@msu.ac.th&lt;/email&gt; (S.W.) 
700 1 |a Guayjarernpanishk, Pannarat  |u Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Nong Khai 43000, Thailand; &lt;email&gt;panngu@kku.ac.th&lt;/email&gt; 
773 0 |t Symmetry  |g vol. 17, no. 3 (2025), p. 375 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181701510/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181701510/fulltextwithgraphics/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181701510/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch