Robust Generalized Loss-Based Nonlinear Filtering with Generalized Conversion

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry vol. 17, no. 3 (2025), p. 334
1. Verfasser: Kuang, Zhijian
Weitere Verfasser: Wang, Shiyuan, Zheng, Yunfei
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3181704546
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17030334  |2 doi 
035 |a 3181704546 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Kuang, Zhijian 
245 1 |a Robust Generalized Loss-Based Nonlinear Filtering with Generalized Conversion 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the nonlinear state estimation problem, the generalized conversion filter (GCF) is proposed using a general conversion of the measurement under minimum mean square error (MMSE) criterion. However, the performance of the GCF significantly deteriorates in the presence of complex non-Gaussian noise as the symmetry of the MMSE is compromised, leading to performance degradation. To address this issue, this paper proposes a new GCF, named generalized loss-based GCF (GLGCF) by utilizing the generalized loss (GL) as the loss function instead of the MMSE criterion. In contrast to other robust loss functions, the GL adjusts the shape of the function through the shape parameter, allowing it to adapt to various complex noise environments. Meanwhile, a linear regression model is developed to obtain residual vectors, and the negative log-likelihood of GL is introduced to avoid the problem of manually selecting the shape parameter. The proposed GLGCF not only retains the advantage of GCF in handling strong measurement nonlinearity, but also exhibits robust performance against non-Gaussian noises. Finally, simulations on the target-tracking problem validate the strong robustness and high filtering accuracy of the proposed nonlinear state estimation algorithm in the presence of non-Gaussian noise. 
653 |a Mean square errors 
653 |a Accuracy 
653 |a Random variables 
653 |a Regression models 
653 |a Signal processing 
653 |a Criteria 
653 |a State estimation 
653 |a Random noise 
653 |a Algorithms 
653 |a Noise 
653 |a Error analysis 
653 |a Performance degradation 
653 |a Tracking 
653 |a Kalman filters 
653 |a Tracking problem 
653 |a Parameters 
653 |a Filtration 
653 |a Robustness 
653 |a Nonlinearity 
700 1 |a Wang, Shiyuan 
700 1 |a Zheng, Yunfei 
773 0 |t Symmetry  |g vol. 17, no. 3 (2025), p. 334 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181704546/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181704546/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181704546/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch