Accurate disaster entity recognition based on contextual embeddings in self-attentive BiLSTM-CRF

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:PLoS One vol. 20, no. 3 (Mar 2025), p. e0318262
Egile nagusia: Hafsa, Noor E
Beste egile batzuk: Hadeel Mohammed Alzoubi, Atikah Saeed Almutlq
Argitaratua:
Public Library of Science
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3181720862
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0318262  |2 doi 
035 |a 3181720862 
045 2 |b d20250301  |b d20250331 
084 |a 174835  |2 nlm 
100 1 |a Hafsa, Noor E 
245 1 |a Accurate disaster entity recognition based on contextual embeddings in self-attentive BiLSTM-CRF 
260 |b Public Library of Science  |c Mar 2025 
513 |a Journal Article 
520 3 |a Automated extraction of disaster-related named entities is crucial for gathering pertinent information during natural or human-made crises. Timely and reliable data is vital for effective disaster management, benefiting humanitarian response authorities, law enforcement agencies, and other concerned organizations. Online news media plays a pivotal role in disseminating crisis-related information during emergencies and facilitating post-hazard disaster response operations. To extract relevant named entities, contextual embedding features prove instrumental. In this study, we investigate the automatic extraction of disaster-related named entities from an annotated dataset of 1000 online news articles. These articles are carefully annotated with 14 crisis-specific entities obtained from relevant ontologies. To generate contextual vector representations of words, we construct a novel word embedding model inspired by Word2vec. These contextual word embedding features, combined with lexicon features, are encoded using a novel contextualized deep Bi-directional LSTM network augmented with self-attention and conditional random field (CRF) layers. We compare the performance of our proposed model with existing word embedding approaches. Through extensive evaluation on an independent test set of 200 articles that includes more than 80,000 tokens, our context-sensitive optimized NER model achieves impressive results at the sentence level. With a Precision of 92%, Recall of 91%, Accuracy of 87%, and an F1-score of 92%, our model outperforms those utilizing general and non-contextual word embeddings, including fine-tuned and contextual BERT models, showcasing its superior performance. 
653 |a Arabic language 
653 |a Disasters 
653 |a Accuracy 
653 |a News media 
653 |a Deep learning 
653 |a Datasets 
653 |a Regression analysis 
653 |a Conditional random fields 
653 |a Ontology 
653 |a Words (language) 
653 |a Data mining 
653 |a Social networks 
653 |a Disaster management 
653 |a Automation 
653 |a Crises 
653 |a Performance evaluation 
653 |a Emergency preparedness 
653 |a Knowledge representation 
653 |a Machine learning 
653 |a Neural networks 
653 |a Natural language processing 
653 |a Algorithms 
653 |a Embedding 
653 |a Semantics 
653 |a Social 
700 1 |a Hadeel Mohammed Alzoubi 
700 1 |a Atikah Saeed Almutlq 
773 0 |t PLoS One  |g vol. 20, no. 3 (Mar 2025), p. e0318262 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181720862/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3181720862/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181720862/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch