Optimization Design of Protective Helmet Structure Guided by Machine Learning

Zapisane w:
Opis bibliograficzny
Wydane w:Processes vol. 13, no. 3 (2025), p. 877
1. autor: Chen, Yongxing
Kolejni autorzy: Wang, Junlong, Long, Peng, Liu, Bin, Wang, Yi, Tian, Ma, Huang, Xiancong, Li, Weiping, Kang, Yue, Ji, Haining
Wydane:
MDPI AG
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3181723886
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13030877  |2 doi 
035 |a 3181723886 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Chen, Yongxing  |u Systems Engineering Institute, Academy of Military Science, Beijing 100010, China; School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
245 1 |a Optimization Design of Protective Helmet Structure Guided by Machine Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With increasing digitization worldwide, machine learning has become a crucial tool in industrial design. This study proposes a novel machine learning-guided optimization approach for enhancing the structural design of protective helmets. The optimal model was developed using machine learning algorithms, including random forest (RF), support vector machine (SVM), eXtreme gradient boosting (XGB), and multilayer perceptron (MLP). The hyperparameters of these models were determined by ten-fold cross-validation and grid search. The experimental results showed that the RF model had the best predictive performance, providing a reliable framework for guiding structural optimization. The results of the SHapley Additive exPlanations (SHAP) method on the contribution of input features show that three structures—the transverse curvature at the foremost point of the forehead, the helmet forehead bottom edge elevation angle, and the maximum curvature along the longitudinal centerline of the forehead—have the highest contribution in both optimization goals. This research achievement provides an objective approach for the structural optimization of protective helmets, further promoting the development of machine learning in industrial design. 
651 4 |a Switzerland 
653 |a Elevation angle 
653 |a Brain research 
653 |a Multilayer perceptrons 
653 |a Data processing 
653 |a Machine learning 
653 |a Structural design 
653 |a Protective structures 
653 |a Learning algorithms 
653 |a Forehead 
653 |a Design optimization 
653 |a Velocity 
653 |a Research methodology 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Design engineering 
653 |a Industrial design 
653 |a Sensors 
653 |a Helmets 
653 |a Algorithms 
653 |a Data collection 
653 |a Curvature 
653 |a Designers 
653 |a Traumatic brain injury 
700 1 |a Wang, Junlong  |u Systems Engineering Institute, Academy of Military Science, Beijing 100010, China; School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
700 1 |a Long, Peng  |u School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
700 1 |a Liu, Bin  |u School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
700 1 |a Wang, Yi  |u School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
700 1 |a Tian, Ma  |u Systems Engineering Institute, Academy of Military Science, Beijing 100010, China 
700 1 |a Huang, Xiancong  |u Systems Engineering Institute, Academy of Military Science, Beijing 100010, China 
700 1 |a Li, Weiping  |u Systems Engineering Institute, Academy of Military Science, Beijing 100010, China 
700 1 |a Kang, Yue  |u Systems Engineering Institute, Academy of Military Science, Beijing 100010, China 
700 1 |a Ji, Haining  |u School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
773 0 |t Processes  |g vol. 13, no. 3 (2025), p. 877 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181723886/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181723886/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181723886/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch