Power Quality Disturbance Classification Strategy Based on Fast S-Transform and an Improved CNN-LSTM Hybrid Model

Uloženo v:
Podrobná bibliografie
Vydáno v:Processes vol. 13, no. 3 (2025), p. 743
Hlavní autor: Bai, Hao
Další autoři: Yao, Ruotian, Zhang, Wenhan, Zhong, Zhenxin, Zou, Hongbo
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3181723887
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13030743  |2 doi 
035 |a 3181723887 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Bai, Hao  |u China Southern Power Grid Electric Power Research Institute, Guangzhou 510000, China; <email>bai.csg@foxmail.com</email> (H.B.); <email>yrtstore@gmail.com</email> (R.Y.); <email>zelday@foxmail.com</email> (W.Z.) 
245 1 |a Power Quality Disturbance Classification Strategy Based on Fast S-Transform and an Improved CNN-LSTM Hybrid Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the increasing complexity of power systems and the widespread application of power electronic equipment, power quality issues have become increasingly prominent, among which power quality disturbances are one of the key factors affecting the stable operation of power systems and the normal functioning of electrical equipment. Current research methods are still limited by feature extraction, insufficient model generalization ability, and strong data dependence. This paper proposes a power quality disturbance classification strategy based on the fast S-transform (FST) and an improved convolutional neural network–long short-term memory (CNN-LSTM) model to achieve accurate classification and identification of various power quality disturbances. Firstly, the FST is employed to process the power quality disturbance signals, enabling efficient analysis and feature extraction while effectively preserving the time–frequency characteristics of the signals and significantly reducing the computational burden. Secondly, to address the limitations of traditional CNN models in power quality disturbance classification, this paper introduces an improved CNN-LSTM hybrid classification model that integrates mechanism fusion. This model improves the classification performance and generalization ability for power quality disturbances by incorporating an enhanced sparrow search algorithm and learning mechanisms. Finally, the proposed strategy is experimentally validated using a large dataset of power quality disturbances. After analysis and comparison, the method proposed in this paper maintains an identification accuracy of over 97% even in strong noise environments when subjected to a single type of disturbance. Under complex conditions involving mixed disturbances of multiple types, the identification accuracy remains above 95%. Compared to existing methods, the proposed method achieves an improvement in identification accuracy by up to 3.2%. Additionally, its identification accuracy in scenarios with small data samples is significantly better than that of traditional methods, such as single CNN models and LSTM models. The experimental results demonstrate that the proposed strategy can accurately classify and identify various power quality disturbances, outperforming traditional methods in terms of classification accuracy and robustness. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Classification 
653 |a Wavelet transforms 
653 |a Electronic equipment 
653 |a Artificial neural networks 
653 |a Signal processing 
653 |a Data processing 
653 |a Accident prevention 
653 |a Long short-term memory 
653 |a Machine learning 
653 |a Data compression 
653 |a Transformations (mathematics) 
653 |a Disturbances 
653 |a Fourier transforms 
653 |a Signal quality 
653 |a Neural networks 
653 |a Renewable resources 
653 |a Search algorithms 
653 |a Power supply 
653 |a Methods 
653 |a Algorithms 
653 |a Complexity 
653 |a Electric equipment 
700 1 |a Yao, Ruotian  |u China Southern Power Grid Electric Power Research Institute, Guangzhou 510000, China; <email>bai.csg@foxmail.com</email> (H.B.); <email>yrtstore@gmail.com</email> (R.Y.); <email>zelday@foxmail.com</email> (W.Z.) 
700 1 |a Zhang, Wenhan  |u China Southern Power Grid Electric Power Research Institute, Guangzhou 510000, China; <email>bai.csg@foxmail.com</email> (H.B.); <email>yrtstore@gmail.com</email> (R.Y.); <email>zelday@foxmail.com</email> (W.Z.) 
700 1 |a Zhong, Zhenxin  |u Huizhou Power Supply Bureau of Guangdong Power Grid, Huizhou 516000, China; <email>wudizi65207ji@163.com</email> 
700 1 |a Zou, Hongbo  |u College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China 
773 0 |t Processes  |g vol. 13, no. 3 (2025), p. 743 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181723887/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181723887/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181723887/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch