Coal Mining Machine Localization Method Based on Non-Gaussian Summation Parallel Kalman Filter Group

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Processes vol. 13, no. 3 (2025), p. 694
المؤلف الرئيسي: Chenrong Xi
مؤلفون آخرون: Zhang, Fan, Yang, Yu, Song, Hui
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3181723913
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13030694  |2 doi 
035 |a 3181723913 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Chenrong Xi  |u Institute of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100080, China<email>17691587289@163.com</email> (Y.Y.); <email>s15175104974@163.com</email> (H.S.) 
245 1 |a Coal Mining Machine Localization Method Based on Non-Gaussian Summation Parallel Kalman Filter Group 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Coal mining machine positioning technology is the key to realizing unmanned and intelligent mining of the comprehensive mining zone. Based on the traditional Strapdown Inertial Navigation System combined with Kalman-filtering coal mining machine positioning technology, non-integrity constraints are introduced, and the error of the output of the above system is filtered by an optimized Kalman filtering method proposed in this paper: non-Gaussian summation and a parallel Kalman filter bank. This method decomposes the non-Gaussian system into a linear combination of multiple Gaussian systems through the parallel Kalman filter group, then fuses the states occupying different weight coefficients and designs a method of Gaussian-term number trimming to solve the problem of parameter explosion in the filtering process, and ultimately obtains the optimal estimation of the positioning information of the coal mining machine. Experiments show that, for the coal mining machine positioning issue in the complex noise interference environment of intelligent mines, the non-Gaussian summation and parallel Kalman filter group method in this paper, compared with the traditional particle filtering method, greatly reduces the three-dimensional attitude error, three-dimensional velocity error, three-dimensional position error in the nine dimensional parameters of the estimation error, and the average estimation error. The average estimation error is reduced by 49%, 52%, 50%, 53%, 51%, 48.8%, 50.1%, 54%, and 51.3%, respectively, which significantly improves the positioning accuracy of coal mining machines, and has stronger real-time performance, stability, and accuracy in the coal mining machine positioning system. 
653 |a Navigation systems 
653 |a Strapdown inertial navigation 
653 |a Coal mining 
653 |a Accuracy 
653 |a Random variables 
653 |a Normal distribution 
653 |a Noise 
653 |a Localization 
653 |a Filter banks 
653 |a Kalman filters 
653 |a Inertial navigation 
653 |a Velocity errors 
653 |a Localization method 
653 |a Velocity 
653 |a Digital twins 
653 |a Positioning devices (machinery) 
653 |a Sensors 
653 |a Mining machinery 
653 |a Algorithms 
653 |a Coal 
653 |a Real time 
653 |a Attitudes 
653 |a Parameters 
653 |a Positioning 
653 |a Position errors 
700 1 |a Zhang, Fan  |u Institute of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100080, China<email>17691587289@163.com</email> (Y.Y.); <email>s15175104974@163.com</email> (H.S.); College of Control Engineering, Xinjiang Institute of Engineering, Urumqi 830000, China 
700 1 |a Yang, Yu  |u Institute of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100080, China<email>17691587289@163.com</email> (Y.Y.); <email>s15175104974@163.com</email> (H.S.) 
700 1 |a Song, Hui  |u Institute of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100080, China<email>17691587289@163.com</email> (Y.Y.); <email>s15175104974@163.com</email> (H.S.) 
773 0 |t Processes  |g vol. 13, no. 3 (2025), p. 694 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181723913/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181723913/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181723913/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch