Domain-Specific Manufacturing Analytics Framework: An Integrated Architecture with Retrieval-Augmented Generation and Ollama-Based Models for Manufacturing Execution Systems Environments

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Processes vol. 13, no. 3 (2025), p. 670
מחבר ראשי: Choi, Hangseo
מחברים אחרים: Jeong, Jongpil
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3181724498
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13030670  |2 doi 
035 |a 3181724498 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Choi, Hangseo 
245 1 |a Domain-Specific Manufacturing Analytics Framework: An Integrated Architecture with Retrieval-Augmented Generation and Ollama-Based Models for Manufacturing Execution Systems Environments 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To support data-driven decision-making in a Manufacturing Execution System (MES) environment, a system that can quickly and accurately analyze a wide range of production, quality, asset, and material information must be deployed. However, existing MES data management approaches rely on predefined queries or report templates that lack flexibility and limit real-time decision support. In this paper, we proposes a domain-specific Retrieval-Augmented Generation (RAG) architecture that extends LangChain’s capabilities with Manufacturing Execution System (MES)-specific components and the Ollama-based Local Large Language Model (LLM). The proposed architecture addresses unique MES requirements including real-time sensor data processing, complex manufacturing workflows, and domain-specific knowledge integration. It implements a three-layer structure: an application layer using FastAPI for high-performance asynchronous processing, an LLM layer for natural language understanding, and a data storage layer combining MariaDB, Redis, and Weaviate for efficient data management. The system effectively handles MES-specific challenges such as schema relationships, temporal data processing, and security concerns without exposing sensitive factory data. This is an industry-specific, customized approach focusing on problem-solving in manufacturing sites, going beyond simple text-based RAG. The proposed architecture considers the specificity of data sources, real-time and high-availability requirements, the reflection of domain knowledge and workflows, compliance with security and quality control regulations, and direct interoperability with MES systems. The architecture can be further enhanced through integration with various manufacturing systems, an advanced LLM, and distributed processing frameworks while maintaining its core focus on MES domain specialization. 
653 |a Language 
653 |a Software 
653 |a Data processing 
653 |a Quality control 
653 |a Security 
653 |a Data storage 
653 |a Manufacturing 
653 |a Servers 
653 |a Distributed processing 
653 |a Natural language 
653 |a Data management 
653 |a User interface 
653 |a Manufacturing execution systems 
653 |a Large language models 
653 |a Knowledge 
653 |a Decision making 
653 |a Retrieval 
653 |a Problem solving 
653 |a Data collection 
653 |a Integrated approach 
653 |a Information processing 
653 |a Queries 
653 |a Real time 
653 |a Information retrieval 
700 1 |a Jeong, Jongpil 
773 0 |t Processes  |g vol. 13, no. 3 (2025), p. 670 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181724498/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181724498/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181724498/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch